Supporting information for

Chemical Tuning of Room-temperature Ferrimagnetism and Ferroelectricity in ε -Fe₂O₃type Multiferroic Oxide Thin Films

Tsukasa Katayama*, Shintaro Yasui, Yosuke Hamasaki, Takuya Osakabe and Mitsuru Itoh

Laboratory for Materials and Structures Laboratory, Tokyo Institute of Technology, Midori-ku,

Yokohama 226-8503, Japan

*E-mail: katayama.t.ad@m.titech.ac.jp

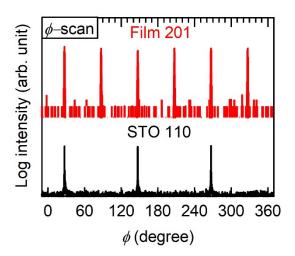


Figure S1. ϕ -scan around film {201} and STO {110} diffraction peaks for the A = Ga film.

Figure S2. Surface morphology (4 μ m × 4 μ m size) for the $A_{0.2}$ Ga_{0.4}Fe_{1.4}O₃ films (A = Al, Ga, Sc and In).

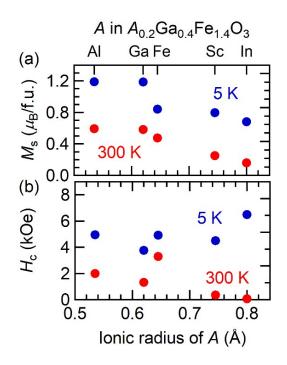


Figure S3. (a) Saturated magnetization (M_s) and (b) coercive field at 5 and 300 K for the $A_{0.2}$ Ga_{0.4}Fe_{1.4}O₃ films (A = Al, Ga, Fe, Sc and In) as a function of ionic radius of A.

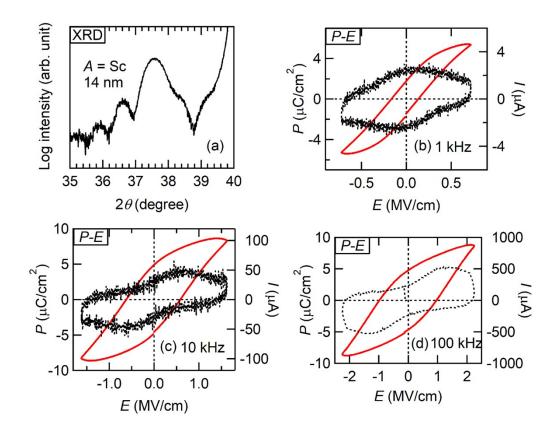


Figure S4. (a) XRD 2θ - θ pattern for the A = Sc film. From the fringe peaks, we decided that thickness of the film is 14 nm. *P*-*E* and *I*-*E* curves for the A = Sc film with thickness of 14 nm at room temperature at (b) 1, (c) 10, and (d) 100 kHz.

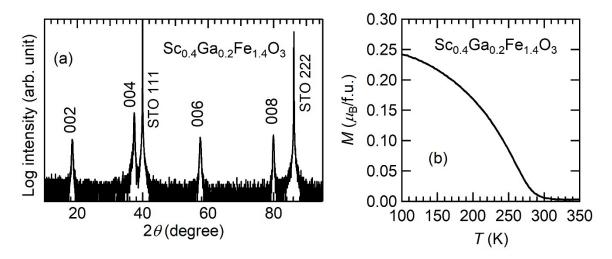


Figure S5. (a) XRD 2θ - θ pattern and (b) *M*-*T* curve for the Sc_{0.4}Ga_{0.2}Fe_{1.4}O₃ film. The *T*_C value is below 300 K.