Supporting Information

The antiferromagnetic state in ultrathin LaNiO₃ layer supported by long-range exchange bias in LaNiO₃/SrTiO₃/La_{0.7}Sr_{0.3}MnO₃ superlattices[†]

Guowei Zhou,^{‡ab} Huihui Ji,^{‡a} Jun Zhang,^a Yuhao Bai,^b Zhiyong Quan,^{ab} and Xiaohong Xu^{*ab}

^aSchool of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Linfen 041004, China. E-mail: xuxh@sxnu.edu.cn ^bResearch Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Techonology, Linfen 041004, China

Corresponding Author

*E-mail: <u>xuxh@sxnu.edu.cn</u>

Fig. S1. (a) The surface topography of the STO substrate measured by atomic force microscopy. (b) The surface topography of LNO(2)/STO(2)/LSMO(5) superlattice and the surface roughness is shown to be 0.243 nm. (c) The enlarged HAADF-TEM image for TiO₂-terminated STO substrate.

Fig. S2. The partial oscillating curve of RHEED during the preparation of the LNO(2 u.c.)/STO(2 u.c.)/LSMO(5 u.c.) superlattice and the RHEED patterns before and after growth of $(2-2-5)_{10}$ SL.

Fig. S3. XRD patterns for a series of referenced samples.

Fig. S4. Hysteresis loops at 5 K after +5 kOe field cooling from room temperature for a series of referenced samples.

Fig. S5. Magnetic hysteresis loops at 5 K for a series of superlattices with different STO or LAO spacer layer thickness performed after cooling in a field 5 kOe from room temperature as (a) LNO(2 u.c.)/STO(n)/LSMO(5 u.c.), (b) LNO(2 u.c.)/LAO(n)/LSMO(5 u.c.).