Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Tailoring photoluminescence stability in double perovskite red phosphors

 $A_2BAlF_6:Mn^{4+}$ (A = Rb, Cs; B = K, Rb) via neighboring-cation

modulation

T. T. Deng, E. H. Song, Y. Y. Zhou, L. Y. Wang, and Q. Y. Zhang¹

State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510641, China

Fig. S1 SEM images of $Rb_2KAlF_6:Mn^{4+}$ (a), $Cs_2KAlF_6:Mn^{4+}$ (b), and $Cs_2RbAlF_6:Mn^{4+}$ (c) synthesized via same reaction environment. The scale bar in the SEM images is fixed at 3 μ m.

¹ Author to whom correspondence should be addressed; Email:<u>ayzhang@scut.edu.cn</u>

Fig. S2 Tanabe–Sugano energy-level diagram of Mn⁴⁺ in an octahedral crystal field.

Fig. S3 Excitation line of blank (BaSO₄) (*E*blank) and excitation (*E*sample) and emission (*L*emission) spectra of $Rb_2KAlF_6:Mn^{4+}$ (a), $Cs_2KAlF_6:Mn^{4+}$ (b), and $Cs_2RbAlF_6:Mn^{4+}$ (c). The quantum efficiency (QE) can be calculated as follows:

$$QE = \frac{\int Lemission}{\int Eblank - \int Esample}$$
(1)

where *L*emission and *E*sample are the emission and excitation spectra of objective samples; *E*blank is the spectrum of the excitation light without samples in integrating sphere. All of spectra were recorded by an optical integrating sphere coupled to the FLS920 fluorescence spectrophotometer at room temperature.

Fig. S4 The ratio of I_a / I_s for A₂BAlF₆:Mn⁴⁺ (A= Rb, Cs; B = K, Rb) as a function of temperature at 298 - 473 K.

Fig. S5 PL decay curves of $K_2BAlF_6:Mn^{4+}$ (B = Li, Na) at room temperature.

Fig. S6 Normalized PL spectra of $A_2BAlF_6:Mn^{4+}$ (A = K, Rb, Cs; B = Li, Na, K, Rb) (a). Temperature-dependent PL spectra of phosphors $K_2LiAlF_6:Mn^{4+}$ (b) and $K_2NaAlF_6:Mn^{4+}$ (c), respectively. The temperature-dependent integrated intensities of total red emission (d), anti-Stokes radiation (e), and Stokes transitions (f) of $A_2BAlF_6:Mn^{4+}$ (A = K, Rb, Cs; B = Li, Na, K, Rb).

Fig. S7 Temperature-dependent photoelectric properties of warm LED 2 and LED 3 with temperature varying from 293 K to 373 K: EL spectra (a), LE (c) and CCT (e) for LED 2; EL spectra (b), LE (d) and CCT (f) for LED 3.

Phosphor	n (Al(OH)3)/mmol	n(RF) /mmol	n(KF) /mmol	n(CsF) /mmol	V_{HF}/mL
Rb ₂ KAlF ₆ :Mn ⁴⁺	5	17.5	7.5		5.5
Cs2KAlF6:Mn4+	5		5	17.5	5
$Cs_2RbAlF_6:Mn^{4+}$	5	9.5		17.5	5

Table S1 Synthetic strategy of A_2BAlF_6 (A = Rb, Cs; B = K, Rb).

Table S2 Tolerance factors, Al-F bond length and Mn^{4+} emission peak of $A_2BAlF_6:Mn^{4+}$ (A = K, Rb, Cs; B = Li, Na, K, Rb), respectively.

Compounds	r _A (CN= 12) /Å	$r_{B}(CN=6) \ / {\rm \AA}$	$r_{Al}(CN=6)/Å$	t	Bond length/Å	Mn^{4+}
					(Al-F)	emission
K2LiAlF6:Mn4+	1.64	0.76	0.54	1.06	1.812	634
K2NaAlF6:Mn4+	1.64	1.02	0.54	1.00	1.806	631
Rb2KAlF6:Mn4+	1.72	1.38	0.54	0.94	1.786	628
Cs ₂ KAlF ₆ :Mn ⁴⁺	1.88	1.38	0.54	0.99	1.806	632
Cs2RbAlF6:Mn4+	1.88	1.52	0.54	0.96	1.792	630

Table S3 Photoelectric parameters of three warm WLED 1 to WLED 3 fabricated by using $Rb_2KAlF_6:Mn^{4+}$, $Cs_2KAlF_6:Mn^{4+}$, and $Cs_2RbAlF_6:Mn^{4+}$ as red light component, accordingly.

	Chromaticity					
LED device	coordinates	CCT (K)	Ra	LE (lm/W)		
	(x, y)					
LED 1	(0.3728, 0.3770)	4217	80.1	80.6		
LED 2	(0.3736, 0.3843)	4238	80.4	122.1		
LED 3	(0.3687, 0.3658)	4263	85.6	121.8		