Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Bicolour electroluminescence of 2-(carbazol-9-yl)anthraquinone base on

solution-process

Bin Huang, ^{ab} Zijing Li, ^b Hui Yang, ^b Die Hu, ^b Wenjing Wu, ^b Yan Feng, ^b Yueming Sun, *^a Baoping Lin ^a and

Wei Jiang *a

^a School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China.

* E-mail: sun@seu.edu.cn (Y. Sun); E-mail: jiangw@seu.edu.cn (W. Jiang).

^b College of Life Sciences and Chemistry, Jiangsu Key Laboratory of Biofunctional Molecule, Jiangsu Second

Normal University, Nanjing, 210013, P. R. China.

Table of Contents

1.Experimental section

- **2.Figures**
- 3.Tables
- 4.References

1.Experimental section

General information

All reactants and solvents were purchased from commercial sources, and were used without further purification. The solid UV–vis absorption spectra were recorded on a UV–Vis–Nir spectrophotometer (Cary 5000, Agilent) The photoluminescence (PL) spectra of the crystals were measured with a fluorospectrophotometer (FluoroMax–4, Horiba). The solid PL quantum efficiency was measured with an integrating sphere. The transient lifetime of the crystals were measured with a fluorospectrophotometer (FLS980, Edinburgh). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were recorded on a Netzsch simultaneous thermal analyzer (STA) system (STA 409PC) and DSC 2910 modulated calorimetry under dry nitrogen atmosphere at a heating rate of 10 $^{\circ}$ C min⁻¹. The X–ray diffraction (XRD) measurements were obtained through a diffractometer (Ultima IV) with an X-ray source of Cu K α at 40 kV and 40 mA, at a scan rate of 2° (20) per 1 min. Single crystal X–ray diffraction measurements were carried out on a Bruker D8 Venture diffractometer with MoK α radiation at 153 K. Single crystals were selected and mounted on a nylon loop in Paratone–N cryoprotectant. Unit cell determination was performed in the Bruker SMART APEX III software suite. The data sets were reduced and a multi–scan spherical absorption correction was implemented in the SCALE interface. CCDC 1573925 and 1573955 provide supplementary crysallographic data for this paper. ¹

Preparation of crystals

Cz-AQ was synthesized according to the previously reported method.² A red needle–like crystal (R–crystal) was yielded from dichloromethane/hexane (V:V=1:2) solution at room temperature, and a yellow ribbon–like crystal (Y–crystal) was obtained by evaporation from dichloromethane/ethanol (V:V=1:1) solution at 80 °C. The single crystals were grown from dichloromethane/methanol (V:V=1:1) solution by slow evaporation.

Device fabrication and performance measurements

Before device fabrication, indium–tin oxide (ITO)–coated glass substrates were pre–cleaned carefully and treated by UV ozone for 4 min. The hole–transporting layer of poly(3,4–ethylenedioxythiophene) doped with poly(styrene– 4–sulfonate)(PEDOT:PSS) aqueous solution was spin–coated onto the ITO substrate and baked at 150 °C for 10 min to remove residue solvent. Then the emission layer (EML) of Cz–AQ in 1,2–dichloroethane (10 wt%, Device 1) or mixture of 1,2–dichloroethane and ethanol (V/V=1:1) (10 wt%, Device 2) was spin–coated onto the PEDOT:PSS layer and annealed at 80 °C for 30 min to exact the residual solvent in N₂ atmosphere. Subsequently, the substrate was transferred into an evaporation chamber, where 2,2',2"–(1,3,5–benzinetriyl) –tris(1–phenyl–*1H*–benzimidazole) (TPBI) was evaporated as electron–transporting layer. Finally, a 1 nm thick Cs₂CO₃ and 100 nm thick AI were evaporated as the metal cathode. The electroluminescent (EL) spectra and the Commission Internationale de l'Eclairage (CIE) coordinates were measured using a PR655 spectra colorimeter. The current density–voltage and brightness–voltage curves of the devices were measured using a Keithley 2400 source meter calibrated by a silicon photodiode. All the measurements were carried out at room temperature under ambient conditions. The external quantum efficiency (EQE) was calculated from the brightness, current density and EL spectrum assuming a Lambertian distribution.

2.Figures

Fig. S1. Transient fluorescence decays of CZ-AQ CZ-AQ in different solid states at 300 K.

Fig. S2. UV-vis spectra of CZ-AQ in different solid states.

Fig. S3. (a) Luminance-voltage characteristics; (b) Current-efficiency versus luminance plots of the devices.

3.Tables

 Table S1. Crystal data and structure refinement for CZ-AQ in different single crystals.

	R-single-crystal	Y-single-crystal		
Formula	C ₂₆ H ₁₅ NO ₂	C ₂₆ H ₁₅ NO ₂		
CCDC No.	1573955	1573925		
Formula weight	373.39	373.39		
Space group	$P2_1/n$	P2 ₁ /n		
Temperature	173(2)	173(2)		
Wavelength	0.71073 Å	0.71073 Å		
Crystal system	Monoclinic	Monoclinic		
Unit cell dimensions	$a = 13.781(8)$ Å $\alpha = 90.00^{\circ}$	$a = 16.073(4)$ Å $\alpha = 90.00^{\circ}$		
	$b = 3.854(2)$ Å $\beta = 94.06(2)^{\circ}$	$b = 8.072(3)$ Å $\beta = 117.88(7)^{\circ}$		
	$c = 35.911 (2) \text{ Å} \qquad \gamma = 90.00^{\circ}$	$c = 16.193(4)$ Å $\gamma = 90.00^{\circ}$		
Volume	1902.37 (19) Å ³	1857.3 (9) Å ³		
Z, Calculated density	4, 1.360 Mg/m ³	4, 1.332 Mg/m ³		
Absorption coefficient	0.089 mm ⁻¹	0.084 mm ⁻¹		
<i>F</i> (000)	808	772		
Crystal size	$0.12\times0.18\times0.24~mm$	$0.10 \times 0.20 \times 0.30 \text{ mm}$		
Theta range for data collection	2.18 to 27.44 deg.	2.87 to 27.65 deg		
Limiting indices	-17<=h<=17, 0<=k<=4, 0<=l<=46	-20<=h<=20,-10<=k<=9,-16<=l<=19		
Reflections collected / unique	$4282 / 3491 [R_{int} = 0.0685]$	$4331 / 2360 [R_{int} = 0.0719]$		

Max. and min. transmission	0.746 and 0.674	0.992 and 0.980
Final R indices [<i>I</i> >2sigma(<i>I</i>)]	$R_1 = 0.0685, wR_2 = 0.2159$	$R_1 = 0.0745, wR_2 = 0.2209$

Table 52. El characteristics of solution processed non doped of EDS based on CZ AQ.							
	V (v)	LE (cd A ⁻¹)	Max luminance	Max EQE	$\lambda_{EL}(nm)$	CIE (x, y)	
			(cd m ⁻²)				
Device 1 ^a	4.3	0.37	850	0.75%	680	(0.68, 0.30)	
Device 2 ^b	3.8	1.85	1200	1.15%	600	(0.50, 0.42)	

Table S2. EL characteristics of solution-processed non-doped OLEDs based on Cz-AQ.

^a The emission layer (EML) of Cz-AQ in 1,2-dichloroethane (10 wt%).

^b EML of Cz–AQ in the mixture of 1,2–dichloroethane and ethanol (V/V=1:1) (10 wt%).

3.References

1. CCDC 1573925 (Y-crystal) and CCDC 1573955 (R-crystal) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

2. B. Huang, Y. Ji, Z. Li, N. Zhou, W. Jiang, Y. Feng, B. Lin, Y. Sun, J. Lumin, 2017, 187, 414