Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Electronic supplementary information

Novel Dendritic Large Molecules as Solution-Processable Thermally Activated Delayed Fluorescent Emitters for Simple Structured Non-doped Organic Light Emitting Diodes

Mallesham Godumala,^a Suna Choi,^a Hyung Jong Kim,^a Chiho Lee,^a Sungnam Park,^a Ji Su Moon,^b Si Woo Kim,^b Jang Hyuk Kwon,^b Min Ju Cho^a and Dong Hoon Choi*^a

^a Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.

^b Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea

> *Email: <u>dhchoi8803@korea.ac.kr</u> Fax: +82-2-925-4284, Tel: +82-2-3290-3140

Figures

Fig. S1 Chemical structures of carbazole-based dendrons and emissive core used in this study.

Fig. S2 DSC thermograms of the TB2CZ-ACTRZ and TB14CZ-ACTRZ.

Fig. S3 UV-Vis absorption and PL spectra of (a) TB7CZ, and (b) ACTRZ in toluene and film states.

Fig. S4 UV-Vis absorption and PL spectra of **TB2CZ-ACTRZ** (**a** and **b**) and **TB14CZ-ACTRZ** (**c** and **d**) in different polar solvents.

Fig. S5 Low temperature fluorescence and phosphorescence spectra measured at 77K in film states. (a) **TB2CZ-ACTRZ** and (b) **TB14CZ-ACTRZ**

Fig. S6 Temperature-dependent transient PL decay of (a) TB2CZ-ACTRZ and (b) TB14CZ-ACTRZ in film states.

Fig. S7 Characteristics of TADF-OLED devices for **TB2CZ-ACTRZ** (t=120 nm) and **TB14CZ-ACTRZ** (t=90 nm): (a) the normalized EL spectra (measured at 1000 cd m⁻²), (b) current density–voltage–luminance (J-V-L), (c) EQE versus current density, and (d) current efficiency and power efficiency versus current density plots. The inset in Fig. a is the device structure.

Fig. S8 Schematic energy level diagrams of (a) device A, and (b) device B.

Fig. S9 Characteristics of TADF-OLED devices for **TB2CZ-ACTRZ** and **TB14CZ-ACTRZ**: (a) the normalized EL spectra, at 1000 cd m⁻² (inset shows the device structure), (b) current density–voltage–luminance (J-V-L), (c) EQE *versus* current density and (d) current efficiency and power efficiency *versus* current density plots.

Fig. S10 Current density–voltage (*J*–*V*) characteristics of hole only devices in simple (device C) and multilayered structure (device D): (a) **TB2CZ-ACTRZ** and (b) **TB14CZ-ACTRZ**.

Tables

Table S1: Optical, photophysical, and electrochemical data of key fragments (TB7CZ and ACTRZ).

compound	λ_{abs} ^{a/b} (nm)	λ _{em} ^{a/b} (nm)	<i>E_g</i> ^c (eV)	HOMO ^d (eV)	LUMO ^e (eV)
TB7CZ	300, 333, 349/ 299, 335, 350	404/403	3.30	-5.51	-2.21
ACTRZ	332, 406/ 334, 406	524/526	2.70	-5.35	-2.65

^a In toluene. ^b In thin film. ^c Calculated from absorption threshold (film state). ^d Calculated using oxidation onset in film state. ^e Obtained by adding optical band gap to HOMO level.

compound	Hexane ^{a/b} (nm)	Toluene ^{a/b} (nm)	Chloroform ^{a/b} (nm)	EA ^{a/b} (nm)
TB2CZ-	298, 335, 347/	299, 338, 349/	299, 338, 349/	298, 337, 348/
ACTRZ	389, 467, 488	394, 517	425, 575	400, 572
TB14CZ-	298, 335, 348/	299, 336, 349/	299, 337, 350/	297, 336, 348/
ACTRZ	388, 460	392, 492	396, 551	390, 558

Table S2: UV-Vis absorption and PL data of TB2CZ-ACTRZ and TB14CZ-ACTRZ in different polar solvents.

^a UV-Vis absorption. ^b PL data.

Table S3: **TB2CZ-ACTRZ** and **TB14CZ-ACTRZ** dendrimers based TADF-OLED performance data (device A).

Compound	V _{on} ^a (V)	Luminance ^b (cd m ⁻²)	CE ^b (cd A ⁻¹)	PE ^b (Im W⁻¹)	EQE (%) ^b	λ _{max} ^c (nm)	CIE ^c (x,y)
TB2CZ-ACTRZ	4.1	1626	26.4	16.6	8.0	524	0.32, 0.57
TB14CZ-ACTRZ	4.2	2370	17.7	12.1	6.8	496	0.22, 0.42

^a Turn-on voltage at a brightness of 1 cd m⁻². ^b Maximum value. ^c At a luminance of 1000 cd m⁻². * CE : current efficiency, PE: power efficiency, EQE: external quantum efficiency. Thickness of TB2Cz-ACTRZ= 120 nm; Thickness of TB14Cz-ACTRZ = 90 nm

Table S4: **TB2CZ-ACTRZ** and **TB14CZ-ACTRZ** dendrimers based TADF-OLED performance data (device B).

Compound	V _{on} ^a (V)	Luminance ^b (cd m ⁻²)	CE ^b (cd A ⁻¹)	PE ^b (Im W⁻¹)	EQE (%) ^c at max/100/500 cd m ⁻²	λ _{max} ^d (nm)	CIE ^d (x,y)
TB2CZ-ACTRZ	3.5	5060	32.0	23.7	9.9/9.9/7.4	520	0.31, 0.57
TB14CZ-ACTRZ	4.0	2622	13.9	7.9	5.5/5.4/2.9	492	0.21, 0.42

^a Turn-on voltage at a brightness of 1 cd m⁻². ^b Maximum value. ^c Data at maximum, 100 and 1000 cd m⁻². ^d At a luminance of 1000 cd m⁻². * CE : current efficiency, PE: power efficiency, EQE: external quantum efficiency.