Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting Information

for

Enhancement of efficiency and long-term stability in graphene/Si-quantumdot heterojunction photodetectors by employing bis(trifluoromethanesulfonyl)-amide as a dopant for graphene

Dong Hee Shin,^{*} Chan Wook Jang,^{*} Ju Hwan Kim,^{*} Jong Min Kim, Ha Seung Lee, Sang Woo Seo, Sung Kim, and Suk-Ho Choi[†]

Department of Applied Physics and Institute of Natural Sciences, Kyung Hee University,

Yongin 17104, Korea

^{*}These authors contributed equally to this work.

 $^{^{\}dagger}\,\text{To}$ whom correspondence should be addressed.

E-mail: <u>sukho@khu.ac.kr</u>

Device Structure	R [AW ⁻¹]	EQE (%)	D^* (cm Hz ^{1/2} W ⁻¹)	NEP [pW Hz ^{-1/2}]	LDR [dB]	Ref
TPA-doped tri- layer graphene/Si	0.435 @ 488 nm	65 @ 550-800 nm	2.1×10^8	33		7
Graphene/thin SiO ₂ /Si	0.73 @ 890 nm	60 @ 650 nm	4.2×10^{12}	0.075	90	24
Graphene/Si	0.29 @ 850 nm		3.9×10^{11}			25
Graphene/porous Si	0.35 @ 950 nm	60 @ 500 nm				26
Nanographene/Si	0.1~0.3 @ white LED					27
RGO/Si	0.064 @ 445 nm		$1.18 \ge 10^{12}$			28
Si QDs/graphene/Si	0.495 @ 877 nm	80 @ 500 nm	7.4 x 10 ⁹	6.7		29
B-doped Si QDs/graphene/Si	~ 10 ⁹ @ 532 nm	~ 10 ¹² @ 532 nm	~ 10 ¹³			33
AuCl ₃ -doped graphene/Si QDs	0.35 @ 600 nm	72 @ 600 nm	8.9 x 10 ⁸	560	73	11
TFSA-doped Graphene/Si QDs	0.413 @630 nm	84 @ 600 nm	1.1 x 10 ¹⁰	45.73	92	This work

Table S1. Performance comparison of the TFSA-doped graphene/SQD:SiO₂/n-Si PDs with other graphene-based Si PDs previously-reported in literatures.

Figures for Supporting Information

Figure S1. (a) Cross-sectional high-resolution transmission electron microscopy (TEM) image of 50-period 2 nm $SiO_{1.0}/2$ nm SiO_2 MLs after annealing at 1100 °C. The inset shows a magnified TEM image of a single SQD. The scale bar in the inset is 2 nm. (b) Average SQD size as a function of x value (c) PL spectra of SQDs:SiO₂ MLs and graphene/ SQDs:SiO₂ MLs on n-Si wafer. (d) PL decay curves of SQDs:SiO₂ MLs and graphene/ SQDs:SiO₂ MLs on n-Si wafer. Here, GR indicates graphene.

Figure S2. (a) Raman spectra of doped graphene layers for various n_D . (b) Absolute R_s its percentage change as functions of n_D . (c) Spectral transmittance spectra of doped graphene layers for various n_D . The inset shows work function of doped graphene layers as a function of n_D . (d) Calculated σ_{DC}/σ_{OP} of doped graphene layers as a function of n_D .

Figure S3. AFM images and height profiles of graphene sheets (a) before and (b) after doping at $n_D = 20$ mM. The scale bars indicate 1 μ m.

Figure S5. Responsivities as functions of bias at $\lambda = 600$ nm for various n_D.

Figure S6. (a) Spectral responsivities and (b) quantum efficiencies under bias voltages from - 1 to -5 V for $n_D = 20$ mM.

Figure S7. *J-V* curves under dark and illumination of a bare graphene/SQDs:SiO₂/n-Si PD. The illumination was done at λ from 400 to 1000 nm. (b) Responsivities as functions of bias at λ from 400 to 1000 nm. (c) Spectral responsivities and (d) external quantum efficiencies under bias voltages from -1 to -5 V.

Figure S8. (a) Frequency-dependent noise current and (b) λ -dependent NEP under various bias voltages at $n_D = 20$ mM.

Figure S9. (a) Time-dependent responsivities at $\lambda = 400$, 600, and 800 nm under various V_a of (a) -1, (b) -3, (c) -4, and (d) -5 V, respectively.