Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Large negative magneto-LC effects induced by racemic dimerization of liquid crystalline nitroxide radicals with terminal cyano group

Takuya Akita, Daichi Kiyohara, Taira Yamazaki, Yoshiaki Uchida* and Norikazu Nishiyama

Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan. *E-mail: yuchida@cheng.es.osaka-u.ac.jp

Fig. S1 Experimental setup to measure EPR spectra.

Fig. S2 Selected EPR spectra of (a) (\pm) -3, (b) (2R,5R)-3 and (c) (\pm) -4 measured at various temperatures from the crystalline phase (top) to the isotropic phase (bottom) through the liquid crystalline phase.

Fig. S3 Selected EPR spectrum of (±)-**3** at 129 °C in heating process. Experimental data (black circles), a fitted curve of differential Lorentzian function (yellow solid line) and little residuals between them (red circles) are shown.

Fig. S4 XRD patterns of (a) (\pm) -**3**, (b) (2R,5R)-**3** and (c) (\pm) -**4** in Cr, LC and Iso phases in the heating processes.

Fig. S5 Polarized optical micrographs of Schlieren textures for the N phase of (\pm) -**2** at 90 °C in cells coated with (a) JALS-204, (b) hexadecyltrimethylammonium bromide (C₁₆TAB) and (c) CYTOP. The orientations of polarizer (P) and analyzer (A) are shown. Scale bars correspond to 200 µm.

Fig. S6 Polarized optical micrographs of (\pm) -**3**. (a) A pseudo isotropic state for the N phase at 125 °C in a cell coated with C₁₆TAB. The bottom-right corner in the image contains no sample. (b) A Schlieren texture for the N phase at 125 °C in a cell coated with CYTOP. The orientations of polarizer (P) and analyzer (A) are shown. Scale bars correspond to 200 μ m.

Determination of the crystal structure of (\pm) -3

Crystals of (±)-**3** suitable for XRD studies were prepared by the recrystallization from hexane and Et₂O, and analyzed using an X-ray diffractometer. The X-ray crystal structure of (±)-**3** was solved by direct methods and refined using the full-matrix least-squares method. In subsequent refinements, the function $\sum \omega (F_o^2 - F_c^2)^2$ was minimized, where F_o and F_c are the observed and calculated structure factor amplitudes, respectively. The positions of non-hydrogen atoms were determined from difference Fourier electron-density maps and refined anisotropically. All calculations were performed with the Crystal Structure crystallographic software package.

Fig. S7 (a) Crystal structure of (±)-**3** determined by X-ray crystallographic analysis and (b) relative position of a pair of molecules in the crystal showing intermolecular interactions between the NO radical group and the methyl group.

Atom	Spin density
N1	0.456679
01	0.479352
C11	0.003377
H11	0.000931
N3	-0.447483
05	-0.491305
C51	-0.001340
H51	0.000597

Table S1 Calculated spin density values of (±)-3.

Fig. S8 Temperature dependences of molar magnetic susceptibility (χ_M) observed by SQUID of (a) (±)-3 and (b) (2*R*,5*R*)-3 at a field of 0.05 T in the first heating process.

Fig. S9 Selected EPR spectrum in the integral form of (±)-3 at 129 °C in heating process. Experimental data (black circles), a fitted curve of Voigt function (yellow solid line) and little residuals between them (red circles) are shown.