Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Figure S1 EL performance of the compared green phosphorescent OLEDs with Ir(ppy)₂(acac) located at the interface of TCTA/26DCzPPy (G0) and BmPyPB (G1), respectively. a) Current density-voltage-luminance, b) Current efficiency-luminance, c) Power Efficiency-Luminance, and d) Normalized EL spectra of the comparable devices.

The device structures:

G₀: ITO (180 nm)/MoO₃ (10 nm)/MoO₃: TAPC (25%, 35 nm)/TAPC (10 nm)/TCTA (5 nm)/ Ir(ppy)₂(acac) (0.2 nm)/26DCzPPy (2 nm)/BmPyPB (10 nm)/BmPyPB:Li₂CO₃ (3%, 25 nm)/Li₂CO₃ (1 nm) /Al (150 nm).

Figure S2 EL performance of the compared blue phosphorescent OLEDs with 26DCzPPy (blue solid line) and BmPyPB (black solid line) as exciton-donors to FIrpic, respectively. a) Current density-voltageluminance, b) Current efficiency- luminance, c) Power Efficiency-Luminance, and d) Normalized EL spectra of the comparable devices.

The device structures:

ITO (180 nm)/MoO₃ (10 nm)/MoO₃: TAPC (25%, 35 nm)/TAPC (10 nm)/TCTA (5 nm)/FIrpic (0.4 nm)/26DCzPPy (2 nm) or BmPyPB (2 nm) /BmPyPB (10 nm) /BmPyPB: Li₂CO₃ (3%, 25 nm)/Li₂CO₃ (1 nm) /AI (150 nm).

Figure S3 EL performance of the compared blue devices with different 26DCzPPy thicknesses. a) Current density-voltage-luminance, b) current efficiency-luminance, c) power efficiency-luminance, and d) normalized EL spectra of the three devices.

The device structures:

4.

ITO (150 nm)/MoO₃ (10 nm)/MoO₃: TAPC (25%, 35 nm)/TAPC (10 nm)/TCTA (5 nm)/FIrpic (0.4 nm)/26DCzPPy (1, 2, 4 nm) /BmPyPB (10 nm) /BmPyPB: Li₂CO₃ (3%, 25 nm)/Li₂CO₃ (1 nm) /Al (150 nm).

Table S1.HOMO, LUMO, and triplet energy of the materials in this work.							
Materials	LUMO ª)	HOMO ^{b)}	T ₁ ^{c)}	Reference			
ТАРС	-2	-5.4	2.9	32			
TCTA	-2.3	-5.7	2.86	26			
26DCzPPy	-2.56	-6.05	2.71	24			
BmPyPB	-2.63	-6.63	2.69	26			
lr(ppy) ₂ (acac)	-2.6	-5	2.4	28			
lr(MDQ)2(acac)	-2.5	-5.7	2.0	27			
FIrpic	-2.4	-5.8	2.62	23			

Table S1.HOMO, L	UMO,	and triplet ener	rgy of the ma	terials in this v	vork
	/				

The highest occupied molecular orbital energy level; b)the lowest unoccupied molecular orbital energy level; c) a) thetriplet state energy.