Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Thermally activated delayed fluorescence dendrimers with exciplex-

forming dendrons for low-voltage-driving and power-efficient

solution-processed OLEDs

Kaiyong Sun,^a Yibai Sun,^b Wenwen Tian,^a Dan Liu,^a Yingli Feng,^a Yueming Sun^{*a} and Wei Jiang^{*a}

^a Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China.

^b Department of Chemical and Pharmaceutical Engineering of Southeast University Chengxian College, Nanjing, Jiangsu, 210088, P. R. China

Fig. S1. ¹H NMR spectra of G-G0.

Fig. S2. ¹³C NMR spectra of G-G0.

Fig. S3. MALDI-TOF-MS spectra of G-mCP.

Fig. S4. ¹H NMR spectra of G-mCP.

Fig. S5. ¹³C NMR spectra of G-mCP.

Fig. S6. MALDI-TOF-MS spectra of G-mCP.

Fig. S8. ¹³C NMR spectra of G-TCTA.

Fig. S9. MALDI-TOF-MS spectra of G-TCTA.

Fig. S10. (a) TGA and DSC traces of G-TCTA and G-mCP at a heating rate of 10 °C min⁻¹; (b)

AFM topographic images of G-TCTA and G-mCP.

Fig. S11. Fluorescence and phosphorescence spectra of G-TCTA and G-mCP in toluene at 300K

and 77 K.

Fig. S12. Transient fluorescence decays of G-TCTA and G-mCP in films at 300 K.

Fig. S13. (a) AFM topographic images of blending film MO-mCP: G-G0 (4:1); (b) Normalized PL spectra of MO-mCP: B3PYMPM: G-G0 (4: 4: 1) blended films.

Fig. S14. Oxidation part of the CV curves of MO-mCP in dichloromethane.

Fig. S15. Normalized PL spectra of MO-mCP, TPBi, and MO-mCP:TPBi (1:1, mol/mol) blended films.

Fig. S16. The EL characteristics of devices based on G-TCTA and G-mCP. (a) Current density–voltage–brightness (J–V–L) characteristics. (b) Current efficiencies and power efficiencies versus brightness characteristics. (c) External quantum efficiencies versus brightness characteristics. (d) The EL spectra operated at 10 V.

EML	V_{on}	PE _{max}	EQE _{max}	CE_{max}	L _{max}	CIE	
	[V]	[lm W ⁻¹]	[%]	[cd A ⁻¹]	[cd m ⁻²]	[x,y]	
G-mCP ^a	2.7	46.6	16.5	44.5	18800	(0.42,0.55)	This work
LEP a	/	/	10.0	/	/	(0.32,0.58)	Ref 1
PAPTC ^a	2.6	37.1	12.6	41.8	10251	(0.30,0.59)	Ref 2
P12 a	3.1	11.2	4.3	10.7	/	(0.24,0.43)	Ref 3
G3TAZ	3.5	/	3.4	/	/	(0.26,0.48)	Ref 20
CDE1 ^a	/	/	13.8	/	10000	(0.40,0.54)	Ref 21
2CzSO ^a	4.7	/	10.7	/	4706	/	Ref 22
CzDMAC-DPS a	3.6	24.0	12.2	30.6	/	(0.24,0.44)	Ref 23
G2B ^a	3.4	11.5	5.7	14.0	/	(0.26,0.48)	Ref 24
TZ-3Cz ^a	3.6	/	10.1	30.5	22000	(0.24,0.51)	Ref 25
POCz-DPS	5.4	/	12.6	7.3	2700	(0.18,0.30)	Ref 26
SiCz:t4CzIPN ^b	/	42.7	18.7	/	/	(0.31,0.59)	Ref 4
CBP:PXZDSO2 b	4.1	/	15.2	45.1	/	(0.42,0.55)	Ref 5
CBP:ACRDSO2 b	3.7	/	17.5	53.3	/	(0.32,0.58)	Ref 5
mCP:4CzCNPy ^b	4.7	14.8	11.3	38.9	/	(0.34,0.59)	Ref 6
SiCz:TB-3PXZ ^b	/	32.6	13.9	41.5	10000	(0.23,0.54)	Ref 7
CBP:4CzIPN ^b	3.4	/	18.5	/	/	(0.32,0.56)	Ref 8
TCTA:pAcBP ^b	/	20.3	9.3	31.8	30800	(0.38,0.57)	Ref 9
TCTA:pCzBP ^b	/	9.0	8.1	24.9	5100	(0.28,0.43)	Ref 9
PCzDP-10 ^b	/	14.1	16.1	38.6		(0.22,0.40)	Ref 10
mCP:Copo1 ^b	/	40.1	20.1	61.3	/	(0.36,0.55)	Ref 11

 Table S1. Comparison of solution-processed TADF OLEDs with vacuum-deposited ETL.

^a Non-doped device, ^b Doped device.