Electronic Supplementary Information (ESI)

A new rigid diindenocarbazole donor moiety for high quantum efficiency thermally activated delayed fluorescence emitter

Kwang Jeong Kim^a, Gyeong Heon Kim^b, Raju Lampande^b, Dae Hyun Ahn^b, Joon Beom Im^b, Ji Su Moon^b, Jae Kyun Lee^c, Jae Yeol Lee^{*a}, Ju Young Lee^{*b}, and Jang Hyuk Kwon^{*b}

^aDepartment of Chemistry, Kyung Hee University, Hoegi-dong, Dongdaemun-gu,
Seoul,02447, Republic of Korea. Email: ljy@khu.ac.kr
^bDepartment of Information Display, Kyung Hee University, 26, Kyungheedae-ro,
Dongdaemoon-gu, Seoul, 02447, Republic of Korea.
E-mail: juyoung105@khu.ac.kr, jhkwon@khu.ac.kr
^cCenter for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and
Technology, 131, Cheongyang, Seoul 02792, Republic of Korea

Table of Contents

1. Experimental section

- 1.1. Material characterization
- 1.2. Device fabrication and characterization
- **1.3.** Computational analysis
- 1.4. Calculations of rate constants and quantum efficiency fractions
- **1.5.** Crystal structure determination
- 2. Material synthesis

1. Experimental section

1.1. Material characterization

UV-vis absorption and photoluminescence (PL) spectra were measured using SCINCO S-4100 spectrometer and JASCO FP8500 spectrometer, respectively. The transient PL decay of 100 nm thick emitter doped into host film was measured using Quantaurus-Tau fluorescence lifetime measurement system (C11367-03, Hamamatsu Photonics Co.) in N₂ filled condition. Electrochemical analyses of the synthesized TADF emitters were inspected using cyclic voltammetry (CV). CV measurements were performed using EC epsilon electrochemical analysis equipment. To measure the CV characteristics of TADF emitters, platinum, carbon wire and Ag wire in 0.01 M AgNO₃, 0.1 M tetrabutyl ammonium perchlorate (Bu₄NClO₄), acetonitrile solution were used as counter, working and reference electrodes, respectively. For supporting electrolyte, 0.1 M tetrabutyl ammonium perchlorate in acetonitrile solution was used. Using an internal ferrocene/ferrocenium (Fc/Fc⁺) standard, the potential values were converted to the saturated calomel electrode (SCE) scale. The optical band-gap was determined from the edge of absorption spectra. The LUMO level of each material was calculated from both the optical energy band gap and HOMO level.

1.2. Device fabrication and characterization

To fabricate TADF-OLEDs, Indium-Tin-Oxide (ITO) covered glass substrates were cleaned in an ultrasonic bath with acetone and isopropyl alcohol. After cleaning, nitrogen blew on the substrates to remove residual impurities followed by UV-ozone treatment for 10 minutes. All organic layers and metal cathode were deposited on pre-cleaned ITO substrates. The vacuum evaporation system was used under ~1 x 10^{-7} Torr vacuum pressure. The deposition rate of organic layer was around 0.5 Å/s. Especially, the deposition rate of LiF and Al were maintained at 0.1 Å/s and 5 Å/s, respectively. After the deposition process, all devices were encapsulated using cover glass and UV resin. The emission area was 2 x 2 mm². The current density versus voltage (J-V) and luminance versus voltage (L-V) characteristics were measured with Keithley 2635A SMU and Konica Minolta CS-100A, respectively. Electroluminescence (EL) spectra and Commission Internationale de l'Eclairage (CIE) 1931 color coordinate were obtained using Konica Minolta CS-2000 spectroradiometer.

1.3. Computational analysis

To calculate the molecular orbitals, and the energy levels of TADF emitters, density functional theory (DFT/B3LYP) simulations were performed with the double numerical plus d-functions (DND) atomic orbital basis set. The molecular simulations were done with DMol3 module in Material studio 8.0 software package (Accelrys Inc., San Diego, California, United States).

1.4. Calculations of rate constants and quantum efficiency fractions

The following equations describe the relationship between rate constants (k_p , k_d , k_{ISC} , k_{RISC} , k_r^s , k_{nr}^T) and quantum efficiency fractions (Φ_p , Φ_d , Φ_{ISC} , Φ_{RISC}). τ_p , τ_d , Φ_p , Φ_d are measured values using time resolved PL decay measurement and integral sphere. Note that the rate constant of non-radiative decay at S₁ state (k_{nr}^s) is assumed to be close to 0.

Equations

$$k_p = \frac{1}{\tau_p} \tag{1}$$

$$\boldsymbol{k_d} = \frac{1}{\boldsymbol{\tau_d}} \tag{2}$$

$$\boldsymbol{k}_{ISC} = (\mathbf{1} - \boldsymbol{\Phi}_p) \boldsymbol{k}_p \tag{3}$$

$$k_{RISC} = \frac{k_p k_d}{k_{ISC}} \frac{\Phi_d}{\Phi_p}$$
⁽⁴⁾

$$\boldsymbol{k_{nr}^{T}} = \boldsymbol{k_d} - \boldsymbol{\Phi_p} \boldsymbol{k_{RISC}}$$
(5)

$$\Phi_{ISC} = \mathbf{1} - \Phi_p \tag{6}$$

$$\Phi_{RISC} = \Phi_d \Phi_{ISC} \tag{7}$$

In equation (1), (2), τ and k are reciprocal relations. Crossing rates between systems can be calculated in order of (3), (4) and (5) and crossing quantum efficiencies between systems also can be calculated in order of (6), and (7) where k_{ISC} is intersystem crossing rate, k_{RISC} is reverse intersystem crossing rate and k_{nr}^T is non-radiative decay rate from lowest triplet state. Φ_{ISC} and Φ_{RISC} refer to intersystem crossing efficiency and RISC efficiency, respectively.^{1, 2}

1.5. Crystal structure determination

Crystal structure measurements were made on a Rigaku R-AXIS RAPID diffractometer using graphite monochromated Mo-K_{α} radiation. The data were collected at a temperature of 297 K to a maximum 2 Θ value of 54.9 °. The structure was solved by direct methods³ and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. Neutral atom scattering factors were taken from International Tables for Crystallography (IT), Vol. C, Table 6.1.1.4.⁴ All calculations were performed using the Crystal Structure⁵ crystallographic software package except for refinement, which was performed using SHELXL Version 2014/7.⁶

2. Material synthesis

All chemicals, reagents, and solvents were purchased from commercial sources and used as received without further purification, unless otherwise mentioned. All reactions were monitored by thin-layer chromatography with silica gel 60 F254 (Merck, 0.2 mm). Column chromatography was carried out on silica gel (200-300 mesh). ¹H and ¹³C-NMR spectra were measured using Bruker Avance 400 and JEOL JNM-ECZR 500 MHz. Additionally, high-resolution mass spectra were performed using JEOL JMS-600W Gas Chromatography-Mass spectrometer

2.1. Synthesis of 5-phenyl-10,15-dihydro-5*H*-diindolo[3,2-*a*:3',2'-*c*]carbazole (1) and 5,10-diphenyl-10,15-dihydro-5*H*-diindolo[3,2-*a*:3',2'-*c*]carbazole (2)

To a solution of 10,15-dihydro-5*H*-diindolo[3,2-*a*:3',2'-*c*]carbazole (2.51 g, 7.27 mmol), iodobenzene (1.63 g, 7.99 mmol), and sodium *tert*-butoxide (2.10 g, 21.8 mmol) in 1,4-dioxane (40 mL) were added palladium(II) acetate (0.0540 g, 0.240 mmol) and tri-*tert*-butylphosphine (0.146 g, 0.720 mmol) under Argon. After stirring at 100 °C for 24 hr, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The residue was purified by flash column chromatography (dichloromethane : hexane = 1:5 to 1:1) and recrystallized from dichloromethane and hexane to give **1** (1.30 g, 42%) as a white solid and **2** (0.72 g, 19%) as a white solid.

1: ¹H-NMR (400 MHz, DMSO- d_6) δ 11.98 (1H, s), 11.92 (1H, s), 8.78 (1H, d, J = 8.0 Hz), 8.74 (1H, d, J = 8.0 Hz), 7.78 (1H, d, J = 8.0 Hz), 7.73-7.67 (5H, m), 7.64 (1H, d, J = 8.0 Hz), 7.44 (2H, t, J = 8.0 Hz), 7.37 (2H, t, J = 8.0 Hz), 7.31 (1H, d, J = 8.0 Hz), 7.17 (1H, t, J = 8.0Hz), 6.64 (1H, t, J = 8.0 Hz), 5.76 (1H, d, J = 8.0 Hz); ¹³C-NMR (100 MHz, DMSO- d_6) δ 140.4, 140.1, 139.0, 138.8, 136.2, 134.8, 133.4, 130.1, 128.7, 128.6, 123.1, 123.0, 122.7, 122.3, 121.9, 121.4, 121.3, 120.5, 120.1, 119.9, 119.2, 118.5, 111.2, 110.7, 109.9, 101.8, 101.5, 100.8.

2: ¹H-NMR (400 MHz, DMSO- d_6) δ 12.01 (1H, s), 8.87 (1H, d, J = 8.0 Hz), 7.77-7.67 (11H, m), 7.49 (1H, t, J = 8.0 Hz), 7.44 (1H, d, J = 8.0 Hz), 7.40 (1H, d, J = 8.0 Hz), 7.22 (1H, t, J = 8.0 Hz), 7.18 (1H, t, J = 8.0 Hz), 7,12 (1H, d, J = 8.0 Hz), 6.72 (1H, t, J = 8.0 Hz), 6.66 (1H, t, J = 8.0 Hz), 5.96 (1H, d, J = 8.0 Hz), 5.75 (1H, d, J = 8.0 Hz); ¹³C-NMR (100 MHz, DMSO- d_6) δ 170.3, 140.9, 140.6, 140.2, 140.0, 139.3, 137.3, 135.8, 134.6, 130.2, 128.9, 128.7, 128.5, 128.4, 123.7, 122.9, 122.5, 121.8, 121.7, 121.5, 121.3, 120.8, 120.2, 119.7, 118.7, 110.9, 110.2, 109.6, 103.0, 102.3, 101.9.

2.2. Synthesis of 5,10-bis{4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl}-15-phenyl-10,15dihydro-5*H*-diindolo[3,2-*a*:3',2'-c]carbazole (DTRZ-DI)

To a solution of 5-phenyl-10,15-dihydro-5*H*-diindolo[3,2-*a*:3',2'-*c*]carbazole (1, 1.30 g, 3.07 mmol), 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine (2.62 g, 6.75 mmol), and sodium *tert*-butoxide (1.947 g, 20.3 mmol) in *o*-xylene (20 mL) were added tri-*tert*-butylphosphine (0.123 g, 0.608 mmol) and tris(dibenzylideneacetone)dipalladium(0)-chloroform adduct (0.210 g, 0.203 mmol). After stirring at 130 °C for 36 hr under Ar, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The residue was purified by flash column chromatography (toluene : hexane = 1:4 to 1:1) and recrystallized from toluene and hexane to give **DTRZ-DI** (2.18 g, 68%) as a yellow solid.

¹H-NMR (500 MHz, CDCl₃) δ 9.08 (4H, d, *J* = 8.0 Hz), 8.81 (8H, d, *J* = 8.0 Hz), 7.88 (4H, d, *J* = 8.0 Hz), 7.73-7.67 (2H, m), 7.67-7.65 (2H, m), 7.65-7.61 (4H, m), 7.61-7.57 (8H, m), 7.53 (2H, t, *J* = 7.2 Hz), 7.56-7.50 (2H, m), 7.37-7.32 (2H, m), 7.29 (1H, dd, *J* = 8.0 and 6.9 Hz), 7.24-7.13 (3H, m), 6.90-6.73 (3H, m), 6.43 (2H, d, *J* = 8.0 Hz), 6.09 (d, J = 8.0 Hz, 1H) ; ¹³C-NMR (126 MHz, CDCl₃) δ 171.9, 170.9, 144.7, 141.8, 141.5, 140.9, 137.7, 137.4, 137.3,

136.2, 135.7, 134.3, 132.8, 130.7, 130.1, 129.8, 129.1, 128.8, 128.7, 128.6, 128.5, 128.4, 126.5, 123.6, 123.5, 123.0, 122.9, 122.8, 122.7, 122.3, 120.7, 120.6, 120.3, 110.1, 110.0, 105.3, 105.1, 105.0; HRMS (FAB+) calcd for C₇₂H₄₅N₉ (M+H) 1036.3876, found: 1036.3870.

2.3. Synthesis of 5-{4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl}-10,15-diphenyl-10,15dihydro-5*H*-diindolo[3,2-*a*:3',2'-*c*]carbazole (TRZ-DI)

TRZ-DI was synthesized by the same route as for **DTRZ-DI** but using 5,10-diphenyl-10,15-dihydro-5*H*-diindolo[3,2-*a*:3',2'-*c*]carbazole (**2**) instead of 5-phenyl-10,15-dihydro-5*H*-diindolo[3,2-*a*:3',2'-*c*]carbazole (**1**). A greenish yellow solid (38%), ¹H-NMR (400 MHz, CDCl₃) δ 9.07 (2H, d, *J* = 8.0 Hz), 8.82 (4H, d, *J* = 8.0 Hz), 7.87 (2H, d, *J* = 8.0 Hz), 7.70-7.57 (16H, m), 7.53 (2H, d, *J* = 8.0 Hz), 7.35 (1H, d, *J* = 8.0 Hz), 7.34 (1H, d, *J* = 8.0 Hz), 7.22 (1H, d, *J* = 8.0 Hz), 7.18 (1H, d, *J* = 8.0 Hz), 7.14 (1H, t, *J* = 8.0 Hz), 6.81 (2H, t, *J* = 8.0 Hz), 6.77 (1H, d, *J* = 8.0 Hz) 6.41 (1H, d, *J* = 8.0 Hz), 6.07 (2H, d, *J* = 8.0 Hz); ¹³C-NMR (100 MHz, CDCl₃) δ 171.8, 170.8, 144.6, 141.7, 141.6, 141.3, 140.8, 137.7, 137.5, 137.2, 136.1, 135.5, 132.6, 130.6, 130.0, 129.0, 128.9, 128.7, 128.4, 128.3, 123.3, 123.2, 123.0, 122.7, 122.6, 122.5, 123.3, 122.2, 120.4, 120.1, 120.0, 109.9, 109.9, 109.8, 104.8, 104.7, 104.5; HRMS (FAB+) calcd for C₅₇H₃₇N₆ (M+H) 805.3080, found: 805.3085.

Fig. S1. DSC and TGA curves of DTRZ-DI (red line) and TRZ-DI (blue line).

Fig. S2. Cyclic voltammetry analysis of DTRZ-DI and TRZ-DI.

Fig. S3. Time-resolved PL decay curve of DTRZ-DI and TRZ-DI in toluene solution (1.0 x 10^{-4} M) at room temperature.

Fig. S4. PL spectrum of TRZ-DI emitter in different polarity solvents ($1.0 \times 10^{-4} \text{ M}$).

Fig. S5. Photoluminescence decay curves of emitter (25%) doped in TCTA:Bepp₂ film measured from 100 K to 300 K. (a) DTRZ-DI and (b) TRZ-DI. The inset table shows the delayed exciton lifetimes and PLQYs at different temperatures.

Fig. S6. Photoluminescence spectra of emitters in mCP: 6% doping films. (a) DTRZ-DI and b) TRZ-DI at room temperature (black line. 300 K) and low temperature (red line. 10 K)). Phosphorescence emissions were obtained under 1 ms delayed condition. c) Phosphorescent emission decay (~6.1 ms lifetime) of TRZ-DI at 10K, d) Delayed fluorescent emission decay (~15.3 µs lifetime) of TRZ-DI at 10K. This exciton decay lifetime of TRZ-DI was measured at 520 nm emission peak at 10 K.

Fig. S7. (a) Current efficiency-luminance, b) Power efficiency-luminance characteristics of DTRZ-DI and TRZ-DI.

Fig. S8. Device performances of TADF-OLEDs with various doping concentration of emitters in TCTA: Bepp2 mixed host (3%, 10% and 30% (a) Current density-voltage, (b) Current efficiency-luminance, (c) Power efficiency-luminance, (d) EQE-luminance characteristics.

Fig. S9. (a) Device structure for the evaluation of operational lifetime (b) Operational lifetime result.

Fig. S10. The device performances of CBP:Bepp₂ based host system (a) Current density-voltage characteristics. (b) EQE-luminance characteristics. (c) EL spectrum.

Emitters	HOMO (eV)	LUMO (eV)	E _g (eV)	T ₁ (eV)	$\begin{array}{c} \Delta E_{ST} \\ (eV) \end{array}$
DTRZ-DI	4.80	1.87	2.93	2.85	0.08
TRZ-DI	4.78	1.83	2.95	2.89	0.06

Table S1. DFT calculation results of DTRZ-DI and TRZ-DI

C5	N1	C6	C7	175.5(2)	C5	N1	C6	C23	-1.7(3)
C6	N1	C5	C4	177.7(2)	C6	N1	C5	C24	-0.6(3)
C5	N1	C40	C39	110.6(2)	C5	N1	C40	C41	-67.2(3)
C40	N1	C5	C4	23.0(4)	C40	N1	C5	C24	-155.26(19)
C6	N1	C40	C39	-39.2(4)	C6	N1	C40	C41	143.0(2)
C40	N1	C6	C7	-31.6(4)	C40	N1	C6	C23	151.2(2)
C13	N2	C14	C7	-2.6(3)	C13	N2	C14	C15	175.6(2)
C14	N2	C13	C8	-1.0(3)	C14	N2	C13	C12	-179.6(2)
C13	N2	C25	C26	-71.6(4)	C13	N2	C25	C30	107.8(3)
C25	N2	C13	C8	-157.9(2) C25	N2	C13	C12	23.5(4)	
C14	N2	C25	C26	135.4(3)	C14	N2	C25	C30	-45.1(4)
C25	N2	C14	C7	153.4(2)	C25	N2	C14	C15	-28.3(4)
C21	N3	C22	C15	-3.4(3)	C21	N3	C22	C23	174.1(2)
C22	N3	C21	C16	0.8(3)	C22	N3	C21	C20	-177.7(2)
C21	N3	C31	C32	-72.2(3)	C21	N3	C31	C36	105.6(3)
C31	N3	C21	C16	-148.4(2) C31	N3	C21	C20	33.1(4)	
C22	N3	C31	C32	144.0(2)	C22	N3	C31	C36	-38.2(3)
C31	N3	C22	C15	144.1(2)	C31	N3	C22	C23	-38.4(4)
C55	N4	C56	N5	-1.1(4)	C55	N4	C56	C43	178.2(2)
C56	N4	C55	N6	1.7(4)	C56	N4	C55	C37	-177.8(2)
C56	N5	C57	N6	1.8(5)	C56	N5	C57	C49	-178.6(2)
C57	N5	C56	N4	-0.5(4)	C57	N5	C56	C43	-179.8(2)
C55	N6	C57	N5	-1.3(4)	C55	N6	C57	C49	179.1(2)
C57	N6	C55	N4	-0.6(4)	C57	N6	C55	C37	178.9(2)
C2	C1	C24	C5	-3.2(4)	C2	C1	C24	C23	177.3(3)
C24	C1	C2	C3	-0 1(4)	C1	C2	C3	C4	2 3(5)
C2	C3	C4	C5	-1.0(4)	C3	C4	C5	N1	179.5(3)
C3	C4	C5	C24	-2.4(4)	N1	C5	C24	C1	-177.1(2)
N1	C5	C24	C23	2.5(3)	C4	C5	C24	C1	4 5(4)
C4	C5	C24	C23	-175 9(2) N1	C6	C7	C8	-4.0(5)	
N1	C6	C7	C14	178 6(2)	N1	C6	C23	C22	-178.6(2)
N1	C6	C23	C24	33(3)	C7	C6	C23	C22	4 0(4)
C7	C6	C23	C24	-174 2(2) C23	C6	C7	C8	172 9(3))
C23	C6	C7	C14	-4 5(4)	C6	C7	C8	C9	, -6.4(6)
C6	C7	C8	C13	176 9(3)	C6	C7	C14	N2	-176.8(2)
C6	C7	C14	C15	4 8(4)	C8	C7	C14	N2	51(3)
C8	C7	C14	C15	-173 3(2) C14	C7	C8		171 2(3))
C14	C7	C8	C13	-5 5(3)	C7	C8	C9	C10	, 179.6(3)
C7	C8	C13	N2	4 0(3)	C7	C8	C13	C12	-1772(2)
C_{0}	C8	C13	N2	-173 A(2) C9	C8	C13	C12	53(4)	177.2(2)
C13	C8	C9	C10	-173.4(2) C	C8	C9	C12	C11	0.6(5)
C_{13}	C10	C11	C10	1.7(5)	C10	C11	C10	C13	-0.5(5)
C11	C10	C13	N2	1.7(3) 175 3(3)	C10	C12	C12	C8	-3.1(5)
N2	C12	C15	C16	-6 5(5)	N2	C12	C15	C^{22}	-5.1(5) 177 $A(2)$
C7	C14	C15	C16	-0.5(3)	C7	C14	C15	C22	-4.6(4)
C_{14}	C14	C15	C10	$\frac{1}{1.5(2)}$	C_1	C14	C15	C22	-4.0(4)
C14	C15	C_{22}	N2	-3.3(3) -178 3(2) C14	C14	C^{13}	C^{10}	(21)	1/9./(3)
C_{14}	C15	C^{22}	N2	-170.3(2) C14	C15	C15	C^{23}	$(2)^{+}$	-172 1(2)
C10	C15	C22	1N3 C17	(3)	C10	C15	C22	C_{23}	-1/3.1(2)
C22	C15	C10	C1/	1/2.3(3) 178 1(2) C15	C22	C15	U10 N2	10(2)	-3.9(3)
C13	C10	UI/	UIð	-1/8.1(3) C13	C10	C21	1N3	1.9(3)	

 Table S2. Torsion angles (°) of TRZ-DI by single-crystal X-ray analysis.

C15	C16	C21	C20	-179.5(2) C17	C16	C21	N3	-175.2(2	2)
C17	C16	C21	C20	3.4(4)	C21	C16	C17	C18	-2.1(4)
C16	C17	C18	C19	-0.2(4)	C17	C18	C19	C20	1.3(5)
C18	C19	C20	C21	-0.0(5)	C19	C20	C21	N3	176.0(3)
C19	C20	C21	C16	-2.4(4)	N3	C22	C23	C6	179.1(2)
N3	C22	C23	C24	-3.4(5)	C15	C22	C23	C6	-3.7(4)
C15	C22	C23	C24	173.8(3)	C6	C23	C24	C1	176.0(3)
C6	C23	C24	C5	-3.5(3)	C22	C23	C24	C1	-1.7(6)
C22	C23	C24	C5	178.8(3)	N2	C25	C26	C27	-179.7(2)
N2	C25	C30	C29	179.8(2)	C26	C25	C30	C29	-0.7(4)
C30	C25	C26	C27	0.9(4)	C25	C26	C27	C28	-0.7(5)
C26	C27	C28	C29	0.3(6)	C27	C28	C29	C30	-0.1(6)
C28	C29	C30	C25	0.4(5)	N3	C31	C32	C33	177.21(18)
N3	C31	C36	C35	-178.45(18)	C32	C31	C36	C35	-0.6(3)
C36	C31	C32	C33	-0.6(4)	C31	C32	C33	C34	1.3(4)
C32	C33	C34	C35	-0.9(5)	C33	C34	C35	C36	-0.4(5)
C34	C35	C36	C31	1.1(4)	C38	C37	C42	C41	0.4(4)
C42	C37	C38	C39	-1.3(4)	C38	C37	C55	N4	-169.3(3)
C38	C37	C55	N6	11.1(4)	C55	C37	C38	C39	178.3(2)
C42	C37	C55	N4	10.3(4)	C42	C37	C55	N6	-169.3(3)
C55	C37	C42	C41	-179.2(2) C37	C38	C39	C40	0.6(4)	
C38	C39	C40	N1	-176.8(3) C38	C39	C40	C41	1.0(4)	
N1	C40	C41	C42	176.0(2)	C39	C40	C41	C42	-1.8(4)
C40	C41	C42	C37	1.1(5)	C44	C43	C48	C47	0.9(5)
C48	C43	C44	C45	-0.5(5)	C44	C43	C56	N4	-3.2(4)
C44	C43	C56	N5	176.0(3)	C56	C43	C44	C45	-179.5(3)
C48	C43	C56	N4	177.8(3)	C48	C43	C56	N5	-2.9(5)
C56	C43	C48	C47	179.8(3)	C43	C44	C45	C46	-0.5(5)
C44	C45	C46	C47	1.3(6)	C45	C46	C47	C48	-1.0(6)
C46	C47	C48	C43	-0.1(6)	C50	C49	C54	C53	-1.0(5)
C54	C49	C50	C51	0.3(6)	C50	C49	C57	N5	-1.5(5)
C50	C49	C57	N6	178.1(3)	C57	C49	C50	C51	177.3(3)
C54	C49	C57	N5	175.4(3)	C54	C49	C57	N6	-5.0(5)
C57	C49	C54	C53	-178.0(3) C49	C50	C51	C52	0.3(7)	
C50	C51	C52	C53	-0.2(7)	C51	C52	C53	C54	-0.6(6)
C52	C53	C54	C49	1.1(6)					

	Maximum efficiency			Maximum	Roll-off ratio f	CIE 1931	
Emitters	CE ^a [cd/A]	PE ^b [lm/W]	EQE ° [%]	- Luminance [cd/m ²]	nce ²] @ 10,000 cd/m ²	@ 20,000 cd/m ²	$(\mathbf{x},\mathbf{y})^{\mathrm{d}}$
3%	62.3	65.2	22.5	54,020	11.5	9.2	(0.30, 0.54)
10%	74.3	76.6	25.9	77,070	19.0	15.8	(0.32. 0.57)
30%	70.0	73.3	25.6	107,500	19.9	17.0	(0.33, 0.58)

Table S3. Device performances of TADF-OLEDs with various doping concentration of emitters in the mixed host.

^a Current efficiency; ^b Power efficiency; ^c External Quantum efficiency; ^d Measured at 10 mA/cm².

Table S4. Thermal properties of TADF emitters.

Emitters	$T_d \ ^a) \ [\ ^oC \]$	$T_g^{\ b)}$ [°C]
DTRZ-DI	528.3	239.3
TRZ-DI	462.2	203.0

^{a)}Decomposition temperature measured by TGA (thermogravimetric analysis) at 5% weight loss; ^{b)}Glass transition temperature scanned from DSC (differential scanning calorimetry).

	Maximum efficiency			Maximum	Roll-off ratio from Max. EQE		CIE 1931
Emitters	CE ^a	PE ^b	EQE °	- Luminance - [cd/m ²]	@ 10,000	@ 20,000	(x, y) ^d
	[cd/A]	[lm/W]	[%]		cd/m ²	cd/m ²	
	73.0	80.2	26.2	53 490	0.26	0.46	(0.32,
DTRZ-DI	15.9	80.2	20.2	55,490	0.20	0.40	0.58)
דם דעק	87.5	01.6	21 /	71 160	0.10	0.31	(0.31,
I KZ-DI	07.5	91.0	51.4	/1,100	0.19	0.51	0.57)

Table S5. Electroluminescence properties of the green OLEDs with new emitters.

^a Current efficiency; ^b Power efficiency; ^c External Quantum efficiency; ^d Measured at 10 mA/cm².

|--|

Emittors	Operating Voltage	External quantum efficiency	CIE 1931	Emission	
Ennuers	@ 1 cd/m ² / 1,000 cd/m ²	Max. / @ 1,000 cd/m^2	(x, y) ^a	peak ^{a)}	
TRZ-DI	2.6 / 3.6 V	28.7 / 24.1%	(0.31, 0.57)	523 nm	
4CzIPN	2.9 / 4.0 V	14.8 / 14.7%	(0.35, 0.59)	535 nm	

^{a)}at 1,000 cd/m².

Reference

- 1. Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, C. Adachi, *Nat. Photon.* 2014, **8**, 326.
- 2. K. Masui, H. Nakanotani, C. Adachi, Org. Electron. 2013, 14, 2721.
- 3. G. M. Sheldrick, SHELXT Version 2014/4: Acta Cryst. 2014, A70, C1437.
- 4. A. J. C. Wilson, International Tables for Crystallography, Vol. C. Ed. Kluwer Academic Publishers, Dordrecht, A. Netherlands, 1992, pp. 572.
- 5. Crystal Structure 4.2.3: Crystal Structure Analysis Package, Rigaku Corporation (2000-2016). Tokyo 196-8666, Japan.
- 6. G. M. Sheldrick, SHELXL Version 2014/7, Acta Cryst. 2008, A64, 112.