Designed synthesis, morphology evolution, and enhanced photoluminescence of a highly efficient red dodec-fluoride

phosphor Li₃Na₃Ga₂F₁₂:Mn⁴⁺ for warm WLEDs

Mengmeng Zhu,^a Yuexiao Pan,^{a*} Yaqi Huang,^a Hongzhou Lian,^b Jun Lin^{b*}

^aKey Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and

Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China.

**E-mail: yxpan8@gmail.com; Fax&Tel:* +86-577-88373017

^bState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of

Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China

*E-mail: jlin@ciac.ac.cn; Fax: +86-431-85698041; Tel: +86-431-85262031

Figure S1 XRD patterns of samples prepared from LiF, NaF, and Ga₂O₃ in HF solution according to the molecular ratios list in Table S1.

Figure S2 XRD patterns of samples prepared from LiF, NaF, and AlF₃· $3H_2O$ according to the molecular ratios list in Table S2.

Figure S3 XRD patterns of samples $Li_3Na_3Ga_2F_{12}$:Mn⁴⁺ prepared with various concentrations of (a) HF and (b) K₂MnF₆ (mol % of $Li_3Na_3Ga_2F_{12}$).

Figure S4 Energy dispersive spectrum (EDS) of red phosphor Li₃Na₃Ga₂F₁₂:Mn⁴⁺.

Figure S5 Decay curves of 629 nm emission of red phosphor $Li_3Na_3Ga_2F_{12}$:Mn⁴⁺ excited at 467 nm measured at 78 and 298 K.

Figure S6 The relationship between log (x) versus log (I/x) in the phosphor $Li_3Na_3Ga_2F_{12}:Mn^{4+}$. (Note: x is the concentration of Mn^{4+} .)

Figure S7 Excitation (monitored at 629 nm) and emission spectra (excited at 467 nm) of red phosphors $Li_3Na_3Ga_2F_{12}$:Mn⁴⁺ and $Li_3Na_3Al_2F_{12}$:Mn⁴⁺ with normalized intensities.

Figure S8. CIE chromaticity coordinates, correlated color temperature (CCT) and color rendering index (CRI) of the as- fabricated LEDs as shown in Fig. 7.

Table S1 The phases of samples prepared from LiF, NaF, and Ga_2O_3 with various

Sample No.	LiF	NaF	Ga ₂ O ₃	Phases
G1	2	2	0.1	$LNGF + Ga_2O_3 + LiF$
G2	1.5	2	0.15	$LNGF + Ga_2O_3 + LiF$
G3	1	2	0.15	$LNGF + Ga_2O_3$
G4	1.5	2	0.1	$LNGF + Ga_2O_3 + LiF$
G5	1	2	0.1	$LNGF + Ga_2O_3$
G6	1	2	0.05	Pure LNGF
G7	1	0	0.67	Pure Li ₃ GaF ₆
G8	0	2	0.67	Pure Na ₃ GaF ₆

molecular ratios in HF solution analyzed by XRD technology.

Table S2 The phases of samples prepared from LiF, NaF, and $AlF_3 \cdot 3H_2O$ with various

molecular ratios in HF solution analyzed by XRD technology.

Sample No.	LiF	NaF	AIF ₃ ·3H ₂ O	Phases
A1	1	1	0.67	Pure LNAF
A2	1	1.2	0.67	Pure LNAF
A3	1	1.4	0.67	$LNAF + LiNa_2AlF_6$
A4	1	1.6	0.67	Pure LiNa ₂ AlF ₆
A5	1	1.8	0.67	Pure LiNa ₂ AlF ₆
A6	1	2	0.67	Pure LiNa ₂ AlF ₆
A7	1	0	0.67	Pure Li ₃ AlF ₃