Supporting information - Up-conversion Quantum Yield of SrF₂:Yb³⁺, Er³⁺ Nanoparticles Prepared by Precipitation from Aqueous Solution

S. Kuznetsov^a, Ya. Ermakova^a, V. Voronov^a, P. Fedorov^a, D. Busko^b, I.A. Howard^{b,c}, B.S. Richards^{b,c} and A. Turshatov^b

^aProkhorov General Physics Institute of Russian Academy of Sciences, , Vavilov 38, 119991 Moscow, Russia ^bInstitute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany ^cLight Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany.

Figure S1 Dependence of UC quantum yield (Φ_{UC}) and exponential coefficient (*n*) as function of excitation power density (P) for emission at 544 nm (green points and lines) and at 655 nm (red points and lines). SrF₂:x%Yb³⁺,2%Er³⁺ with x = 2 (a), 5 (b), 7.5 (c) and 10 (d).

Figure S2 Convolution (dashed red line) of UC green-state decay (green solid line) and decay of the directly excited red state (rose solid line) gives faster decay then experimentally measured UC red-state decay (red solid line) for SrF₂:2%Yb³⁺,1.5%Er³⁺.

Figure S3 Population kinetics of the Er^{3+} : ${}^{2}H_{11/2}$, ${}^{4}S_{3/2}$ (green lines), Er^{3+} : ${}^{4}F_{9/2}$ (red lines) and Er^{3+} : ${}^{2}H_{9/2}$ (blue lines) states of material SrF₂:2%Yb³⁺, 1.5%Er³⁺ by laser excitation with λ =980 nm and excitation power density 10 W/cm².

Figure S4 Population kinetics (a) and decays (b) of the Er^{3+} : ${}^{2}H_{11/2}$, ${}^{4}S_{3/2}$ (green lines), Er^{3+} : ${}^{4}F_{9/2}$ (red lines) and Er^{3+} : ${}^{2}H_{9/2}$ (blue lines) states of material SrF₂:5%Yb³⁺, 1.5%Er³⁺ by laser excitation with λ =980 nm and excitation power density 10 W/cm²

Figure S5 Population kinetics (a) and decays (b) of the Er^{3+} : ${}^{2}H_{11/2}$, ${}^{4}S_{3/2}$ (green lines), Er^{3+} : ${}^{4}F_{9/2}$ (red lines) and Er^{3+} : ${}^{2}H_{9/2}$ (blue lines) states of material SrF_2 : 7.5% Yb³⁺, 1.5% Er³⁺ by laser excitation with λ =980 nm and excitation power density 10 W/cm²

Figure S6 Population kinetics (a) and decays (b) of the Er^{3+} : ${}^{2}H_{11/2}$, ${}^{4}S_{3/2}$ (green lines), Er^{3+} : ${}^{4}F_{9/2}$ (red lines) and Er^{3+} : ${}^{2}H_{9/2}$ (blue lines) states of material SrF₂:10%Yb³⁺,1.5%Er³⁺ by laser excitation with λ =980 nm and excitation power density 10 W/cm²

Figure S8 Population kinetics (a) and decays (b) of the Er^{3+} : ${}^{2}H_{11/2}$, ${}^{4}S_{3/2}$ (green lines), Er^{3+} : ${}^{4}F_{9/2}$ (red lines) and Er^{3+} : ${}^{2}H_{9/2}$ (blue lines) states of material SrF₂:2%Yb³⁺,5%Er³⁺ by laser excitation with λ =980 nm and excitation power density 10 W/cm²

Figure S9 Population kinetics (a) and decays (b) of the Er^{3+} : ${}^{2}H_{11/2}$, ${}^{4}S_{3/2}$ (green lines), Er^{3+} : ${}^{4}F_{9/2}$ (red lines) and Er^{3+} : ${}^{2}H_{9/2}$ (blue lines) states of material SrF₂:2%Yb³⁺,7.5%Er³⁺ by laser excitation with λ =980 nm and excitation power density 10 W/cm²

Figure S10 Population kinetics (a) and decays (b) of the Er^{3+} : ${}^{2}H_{11/2}$, ${}^{4}S_{3/2}$ (green lines), Er^{3+} : ${}^{4}F_{9/2}$ (red lines) and Er^{3+} : ${}^{2}H_{9/2}$ (blue lines) states of material SrF_2 : $2%Yb^{3+}$, $10\% Er^{3+}$ by laser excitation with λ =980 nm and excitation power density 10 W/cm²

Host	Er ³⁺ /Yb ³⁺ mol.%	τ _{υς} (Er ³⁺ : ⁴ F _{9/2}), ms	τ _{UC} (Er ³⁺ : ² H _{11/2} , ⁴ S _{3/2}), ms	τ _{υς} (Er ³⁺ : ² H _{9/2}), ms
SrF ₂	2/2	0.87	0.46	0.47
SrF ₂	2/5	0.56	0.27	0.19
SrF ₂	2/7.5	0.37	0.16	0.12
SrF ₂	2/10	0.30	0.13	0.12

Table S1 UC luminescence lifetime of Er^{3+} under 980 nm excitation in SrF_2 host with different dopant concentrations.

Table S2 UC luminescence lifetime of Er3+ under 980 nm excitation in SrF2 host with different dopant concentrations.

Host	Er ³⁺ /Yb ³⁺ mol.%	τ _{UC} (Er ³⁺ : ⁴ F _{9/2}), ms	τ _{UC} (Er ³⁺ : ² H _{11/2} , ⁴ S _{3/2}), ms	τ _{υς} (Er ³⁺ : ² H _{9/2}), ms
SrF_2	1.5/2	0.73	0.36	0.25
SrF_2	1.5/5	0.46	0.20	0.17
SrF_2	1.5/7.5	0.39	0.17	0.13

SrF_2	1.5/10	0.29	0.13	0.11