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Additional Figures
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Figure S1 (a) FTIR spectrum of tBuSiOH-POM. For the POM part, the bands at 1100 cm™ and 1034 cm™ are assigned
to the P-O stretching modes of the central PO, tetrahedron.® At 1003 cm™, 969 cm™, 940 cm™ appear bands
corresponding to W=0 modes and at 864 cm™, 835 cm™, 727 cm™ corresponding to W-O-W stretching modes, while
the bands at 389 cm™ and 345 cm™ are considered as the a isomer signature.” The bands at 810 cm™ and 1080 cm™
are assigned to Si-O bending and stretching modes while the band at 1487 cm™ is assigned to C-C stretching mode.?
In the high-frequency part, the typical broad-band pattern at 3400 cm™ is characteristic of the —OH stretching of Si-
OH or adsorbed water molecules.” (b) Absorption spectrum of tBuSiOH-POM in an acetonitrile solution.
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Figure S2 (a) *'P NMR and (b) 'H NMR spectra of tBuSiOH-POM: The *'P NMR spectrum depends on the saturation
state of the polyoxometalate.® In the case of tBuSiOH-POM, the signal for the phosphorus atoms is found at & =-
15.85 ppm. For a complete structural analysis in solution of tBuSiOH-POM, 'H NMR spectroscopy has been
performed in CD;CN. In addition to the [nBu,N]* resonances, the '"H NMR spectrum of tBuSiOH-POM displays
assigned to the Si-OH and tBuSi moieties respectively. The relative integration of these signals compatible with the
formula, that are three tBuSiOH groups grafted on a [PWs03,]° anion and there are [nBusN]" cations.®”
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Figure S3 (a) Cyclic voltammogram of tBuSiOH-POM at glassy carbon electrode. The concentration of tBuSiOH-POM
was 10 mol L* in a acetonitrile solution with 10" mol L™ Bu,NBF, as supporting electrolyte. Scanning rate: 100
mV/s. The cyclic voltammetry data of the tBuSiOH-POM compound were collected with respect to Ag/Ag" and the
calculated LUMO energy level was -4.384 eV. Notably, each of the three polyoxotungstate hybrids [PWq03,
(tBuSiOH);]* displays three reversible waves. They correspond to one-electron redox processes as it is known to be
the case for Keggin-type POMs in non-aqueous solvents when no protonation accompanies reduction.®® The
reduction waves of tBuSiOH-POM are only slightly shifted to more negative potentials with respect to [PWy03,
(tBuSiOH);]*". (b) Energy levels of POM as estimated from cyclic voltammetry and absorption measurements.
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Figure S4 XPS W4f peaks of a tBuSiOH-POM thin film deposited on (a) TiO, and (b) ZnO substrates. The
deconvolution of the W 4f photoemission peaks of tBuSiOH-POM on TiO, was performed using two distinct doublets
with the major contribution coming from the doublet with peaks of nearly equal width with the binding energy (BE)
of W 4f;), centered at 35.8 + 0.1 eV and that of W 4f;,, at a BE of 37.8 £ 0.1 eV (with a peak ratio of 4:3). The position
and the shape of these peaks are representative of W atoms with an oxidation state +6." In addition, a second
doublet at lower BEs (BE of W 4f;;, = 34.5 eV, and of W 4fs;, = 36.2 eV with a peak ratio 4:3) is also evident, which
was attributed to the presence of W’ ions, indicating that these films are reduced (exhibiting tungsten atoms with a
valence of +5). The signal of tBuSiOH-POM on ZnO was very weak probably due to the nanoparticle-like surface
morphology and the increased surface roughness of ZnO as compared to TiO,.
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Figure S5 XPS spectra acquired from TiO,/tBuSiOH-POM interface of (a) Si2p and (b) N1s located at 102.0 eV and
401.9 eV BEs respectively. The signal of the corresponding XPS peaks of ZnO/tBuSiOH-POM interface was very weak
and, therefore, they are not presented.
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Figure S6 (a) Absorption spectra and (b) Tauc plots as derived from absorption measurements for TiO, (indirect gap)

Wavelength (nm)

(a)

with and without the tBuSiOH-POM.

Absorbance (a. u.)

Figure S7 (a) Absorption spectra and (b) Tauc plots as derived from absorption measurements for ZnO (direct gap)
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Figure S8 Contact angle measurements of deionized water and diiodomethane drops on TiO, with and without
tBuSiOH-POM.
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Figure S9 Contact angle measurements of deionized water and diiodomethane drops on ZnO with and without
tBuSiOH-POM.
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Figure $S10 The near Fermi level region of the UPS spectrum of TiO,/tBuSiOH-POM interface.
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Figure S11 (a) J-V characteristics under 1.5 AM illumination of P3HT:PC;,BM-based devices fabricated on FTO/TiO, or
FTO/ZnO substrates without and with tBuSiOH-POM (see also Table S2). For the device fabrication P3HT:PC;;BM
blends (10 mg mL* for P3HT, 8 mg mL"* for PC;,BM in 1,2-dichlorobenzene) were spin coated at 600 rpm for 40 sec
and annealed at 135 °C for 15 sec. (b) Dark J-V characteristics of the PSC devices without and with tBuSiOH-POM.
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Figure S12 J-V characteristics under 1.5 AM illumination of PTB7:PC;,BM-based devices fabricated on FTO/TiO, or
FTO/ZnO substrates without and with tBuSiOH-POM (see also Table S3). For the device fabrication PTB7:PC;;BM
blends were deposited inside an argon filled glove-box via spin coating at 1000 rpm for 90 sec from solutions with
concentrations of 10 mg mL"* for PTB7 and 15 mg mL™ for PC;,BM in 1,2-dichlorobenzene where 3% per volume of
1,8-diiodoctane (DIO) was added and was then left to dry for 30 min inside the glove box, without any post-
deposition annealing. (b) Dark J-V characteristics of the PSC devices without and with tBuSiOH-POM.
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Figure S13 (a) J-V characteristics under 1.5 AM illumination of P3HT:ICsBA-based devices fabricated on ITO and
ITO/tBuSiOH-POM substrates (see also Table S4). (b) Dark J-V characteristics of the PSC devices without and with
tBuSiOH-POM.
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Figure S14 Polyhedral molecular structure of the tBuSiOH-POM in gas phase, obtained via geometry optimization at
the DFT-PBE level of theory.
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Figure S15 Steady-state PL spectra of P3HT:IC¢,BA blends on as-deposited and tBuSiOH-POM-covered (a) TiO, and (b)
ZnO films.
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Additional tables

Table S1 Surface energy as derived from contact angle measurements of TiO, and ZnO substrates without and with
tBuSiOH-POM spin coated from a solution with concentration of 5 mg ml™.

Substrate 8 () 0.(°) v, (ml m?) v, (mJm?) y(m) m?)
TiO, 45.0 (¥2.0) 29.4(#1.0) 22.93(+0.53) 35.81(+0.07) 58.74 (+0.40)
TiO,/tBuSiOH-POM 52.1(#1.8) 39.3(#1.2) 20.40(+0.75) 32.22(+0.40) 52.62 (+0.45)
ZnO 46.7 (¥2.1) 20.6(x0.9) 20.21(¥0.71) 39.26 (+0.27) 59.47 (+0.43)
ZnO/tBuSiOH-POM 54.2 (#1.8) 29.4(#1.0) 16.75(+0.50) 37.18 (+x0.30) 53.93 (+0.20)

TableS2. Device characteristics of polymer solar cells having the device configuration FTO/TiO, or ZnO without and
with tBuSiOH-POM/P3HT:PC;,BM/MoO,/Al (mean values and standard deviations were extracted from a batch of 8
independent devices).

ETL ) Vv FF PCE R, Rep

(mA cm?) (\;; (%) (Q cm?) (Q cm?)
Tio, 9.43 (t0.11)  0.60 (:0.01)  0.56(x0.01) 3.17(0.12) 3.9 1807
Zno 9.80 (t0.10)  0.60 (t0.01)  0.58(x0.01) 3.41(0.10) 2.8 1763
Ti0,/tBuSiOH-POM 10.60 (+0.15)  0.64 (:0.01) _ 0.65 (+0.01)  4.41 (x0.14) 21 2667
Zn0O/ tBuSiOH-POM 10.80 (+0.12) 0.64 (+0.01) 0.64 (+0.01) 4.42 (+0.13) 1.9 2376

TableS3. Device characteristics of polymer solar cells having the device configuration FTO/TiO, or ZnO without and
with tBuSiOH-POM/PTB7:PC;,BM/MoO,/Al (mean values and standard deviations were extracted from a batch of 8
independent devices).

ETL .. Voo FF PCE R, Re,

(mA cm?) (V) (%) (Qcm?) (Qcm?)
Tio, 1424 (t0.17)  0.71(¢0.01)  0.63 (t0.01) 637 (x0.15) 2.4 2677
Zn0O 14.64 (+0.14) 0.71 (+0.01) 0.64 (+0.01) 6.65 (+0.16) 2.0 3674
TiO,/tBuSiOH-POM 16.20 (+0.16) 0.74 (+0.01) 0.67 (+0.01) 8.03 (+0.17) 1.8 3921
Zn0O/ tBuSiOH-POM 16.35 (+0.13) 0.74 (+0.01) 0.68 (+0.01) 8.23 (+0.14) 1.5 4361
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TableS4. Device characteristics of polymer solar cells having the device configuration ITO without and with tBuSiOH-
POM/P3HT:ICsBA/MoO,/Al (mean values and standard deviations were extracted from a batch of 4 independent
devices).

ETL I Voo FF PCE R, Ru
(mA cm?) (V) (%) (Qcm?) (Qcm?)
ITO 3.69 (+0.18) 0.25 (+0.01) 0.31 (+0.01) 0.29 (+0.20) 21.2 123
ITO/tBuSiOH-POM 9.51 (+0.14) 0.74 (+0.01) 0.60 (+0.01) 4.22 (+0.17) 3.7 1620

Table S5 Fitting parameters, obtained for P3HT 20 nm thick films (excitation wavelength: 410 nm. Detection
wavelength: 700 nm) deposited on TiO, or ZnO substrates without and with tBuSiOH-POM.

Substrate A, T (ps) A, T, (ps) A; T (ps) <t> (ps)
TiO, - - 0.63 2.2 0.37 16 7.4
TiO,/tBuSiOH-POM 0.47 0.32 0.53 191 - - 1.2
ZnO - - 0.61 2.9 0.39 22 10.3
Zn0O/ tBuSiOH-POM 0.31 15 0.37 3.2 0.32 23 9.0
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