Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

## **Supporting Information**

# A Silanol-Functionalized Polyoxometalate with Excellent Electron Transfer Mediating Behavior to ZnO and TiO<sub>2</sub> Cathode Interlayers for Highly Efficient and Extremely Stable Polymer Solar Cells

Marinos Tountas,<sup>a,b</sup> Yasemin Topal,<sup>c</sup> Apostolis Verykios,<sup>a,d</sup> Anastasia Soultati,<sup>a</sup> Andreas Kaltzoglou,<sup>a</sup> Theodoros A. Papadopoulos,<sup>e</sup> Florian Auras,<sup>f</sup> Kostas Seintis,<sup>d</sup> Mihalis Fakis,<sup>d</sup> Leonidas C. Palilis,<sup>d</sup> Dimitris Tsikritzis,<sup>g</sup> Stella Kennou,<sup>g</sup> Azhar Fakharuddin,<sup>h</sup> Lukas Schmidt-Mende,<sup>h</sup> Spyros Gardelis,<sup>i</sup> Mahmut Kus,<sup>j</sup> Polycarpos Falaras,<sup>a</sup> Dimitris Davazoglou,<sup>a</sup> Panagiotis Argitis,<sup>a</sup> Maria Vasilopoulou<sup>a</sup>,\*

<sup>a</sup>Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", 15310, Agia Paraskevi, Attiki, Greece

<sup>b</sup>School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece

<sup>c</sup>Pamukkale University Cal Vocational High School,20700, Cal/Denizli, Turkey.

<sup>d</sup>Department of Physics, University of Patras, 26504 Patras, Greece

<sup>e</sup>Department of Natural Sciences, University of Chester, Thornton Science Park, CH2 4NU, Chester, U. K.

<sup>f</sup>Cavendish Laboratory, University of Cambridge, Cambridge CB3 OHE, United Kingdom

<sup>g</sup>Department of Chemical Engineering, University of Patras, 26504 Patras, Greece

<sup>h</sup>Department of Physics, University of Konstanz, 78457 Konstanz, Germany.

<sup>1</sup>Solid State Physics Section, Physics Department, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Zografos, Athens, Greece

<sup>i</sup>Chemical Engineering Department, Selcuk University, 42075 Konya, Turkey

\*email: m.vasilopoulou@inn.demokritos.gr

#### **Additional Figures**



**Figure S1** (a) FTIR spectrum of tBuSiOH-POM. For the POM part, the bands at 1100 cm<sup>-1</sup> and 1034 cm<sup>-1</sup> are assigned to the P-O stretching modes of the central PO<sub>4</sub> tetrahedron.<sup>1</sup> At 1003 cm<sup>-1</sup>, 969 cm<sup>-1</sup>, 940 cm<sup>-1</sup> appear bands corresponding to W=O modes and at 864 cm<sup>-1</sup>, 835 cm<sup>-1</sup>, 727 cm<sup>-1</sup> corresponding to W-O-W stretching modes, while the bands at 389 cm<sup>-1</sup> and 345 cm<sup>-1</sup> are considered as the  $\alpha$  isomer signature.<sup>2</sup> The bands at 810 cm<sup>-1</sup> and 1080 cm<sup>-1</sup> are assigned to Si-O bending and stretching modes while the band at 1487 cm<sup>-1</sup> is assigned to C-C stretching mode.<sup>3</sup> In the high-frequency part, the typical broad-band pattern at 3400 cm<sup>-1</sup> is characteristic of the –OH stretching of Si-OH or adsorbed water molecules.<sup>4</sup> (b) Absorption spectrum of tBuSiOH-POM in an acetonitrile solution.



**Figure S2** (a) <sup>31</sup>P NMR and (b) <sup>1</sup>H NMR spectra of tBuSiOH-POM: The <sup>31</sup>P NMR spectrum depends on the saturation state of the polyoxometalate.<sup>5</sup> In the case of tBuSiOH-POM, the signal for the phosphorus atoms is found at  $\delta$  =-15.85 ppm. For a complete structural analysis in solution of tBuSiOH-POM, <sup>1</sup>H NMR spectroscopy has been performed in CD<sub>3</sub>CN. In addition to the [nBu<sub>4</sub>N]<sup>+</sup> resonances, the <sup>1</sup>H NMR spectrum of tBuSiOH-POM displays assigned to the Si-OH and tBuSi moieties respectively. The relative integration of these signals compatible with the formula, that are three tBuSiOH groups grafted on a [PW<sub>9</sub>O<sub>34</sub>]<sup>9-</sup> anion and there are [nBu<sub>4</sub>N]<sup>+</sup> cations.<sup>6,7.</sup>



**Figure S3** (a) Cyclic voltammogram of tBuSiOH-POM at glassy carbon electrode. The concentration of tBuSiOH-POM was  $10^{-3}$  mol L<sup>-1</sup> in a acetonitrile solution with  $10^{-1}$  mol L<sup>-1</sup> Bu<sub>4</sub>NBF<sub>4</sub> as supporting electrolyte. Scanning rate: 100 mV/s. The cyclic voltammetry data of the tBuSiOH-POM compound were collected with respect to Ag/Ag<sup>+</sup> and the calculated LUMO energy level was -4.384 eV. Notably, each of the three polyoxotungstate hybrids [PW<sub>9</sub>O<sub>34</sub> (tBuSiOH)<sub>3</sub>]<sup>3-</sup> displays three reversible waves. They correspond to one-electron redox processes as it is known to be the case for Keggin-type POMs in non-aqueous solvents when no protonation accompanies reduction.<sup>8,9</sup> The reduction waves of tBuSiOH-POM are only slightly shifted to more negative potentials with respect to [PW<sub>9</sub>O<sub>34</sub> (tBuSiOH)<sub>3</sub>]<sup>3-</sup>. (b) Energy levels of POM as estimated from cyclic voltammetry and absorption measurements.



**Figure S4** XPS W4f peaks of a tBuSiOH-POM thin film deposited on (a) TiO<sub>2</sub> and (b) ZnO substrates. The deconvolution of the W 4f photoemission peaks of tBuSiOH-POM on TiO<sub>2</sub> was performed using two distinct doublets with the major contribution coming from the doublet with peaks of nearly equal width with the binding energy (BE) of W 4f<sub>7/2</sub> centered at 35.8 ± 0.1 eV and that of W 4f<sub>5/2</sub> at a BE of 37.8 ± 0.1 eV (with a peak ratio of 4:3). The position and the shape of these peaks are representative of W atoms with an oxidation state +6.<sup>10</sup> In addition, a second doublet at lower BEs (BE of W 4f<sub>7/2</sub> = 34.5 eV, and of W 4f<sub>5/2</sub> = 36.2 eV with a peak ratio 4:3) is also evident, which was attributed to the presence of W<sup>5+</sup> ions, indicating that these films are reduced (exhibiting tungsten atoms with a valence of +5). The signal of tBuSiOH-POM on ZnO was very weak probably due to the nanoparticle-like surface morphology and the increased surface roughness of ZnO as compared to TiO<sub>2</sub>.



**Figure S5** XPS spectra acquired from TiO<sub>2</sub>/tBuSiOH-POM interface of (a) Si2p and (b) N1s located at 102.0 eV and 401.9 eV BEs respectively. The signal of the corresponding XPS peaks of ZnO/tBuSiOH-POM interface was very weak and, therefore, they are not presented.



**Figure S6** (a) Absorption spectra and (b) Tauc plots as derived from absorption measurements for  $TiO_2$  (indirect gap) with and without the tBuSiOH-POM.



**Figure S7** (a) Absorption spectra and (b) Tauc plots as derived from absorption measurements for ZnO (direct gap) with and without the tBuSiOH-POM.



**Figure S8** Contact angle measurements of deionized water and diiodomethane drops on  $TiO_2$  with and without tBuSiOH-POM.



**Figure S9** Contact angle measurements of deionized water and diiodomethane drops on ZnO with and without tBuSiOH-POM.



Figure S10 The near Fermi level region of the UPS spectrum of TiO<sub>2</sub>/tBuSiOH-POM interface.



**Figure S11** (a) J-V characteristics under 1.5 AM illumination of P3HT:PC<sub>71</sub>BM-based devices fabricated on FTO/TiO<sub>2</sub> or FTO/ZnO substrates without and with tBuSiOH-POM (see also Table S2). For the device fabrication P3HT:PC<sub>71</sub>BM blends (10 mg mL<sup>-1</sup> for P3HT, 8 mg mL<sup>-1</sup> for PC<sub>71</sub>BM in 1,2-dichlorobenzene) were spin coated at 600 rpm for 40 sec and annealed at 135 °C for 15 sec. (b) Dark J-V characteristics of the PSC devices without and with tBuSiOH-POM.



**Figure S12** J-V characteristics under 1.5 AM illumination of PTB7:PC<sub>71</sub>BM-based devices fabricated on FTO/TiO<sub>2</sub> or FTO/ZnO substrates without and with tBuSiOH-POM (see also Table S3). For the device fabrication PTB7:PC<sub>71</sub>BM blends were deposited inside an argon filled glove-box via spin coating at 1000 rpm for 90 sec from solutions with concentrations of 10 mg mL<sup>-1</sup> for PTB7 and 15 mg mL<sup>-1</sup> for PC<sub>71</sub>BM in 1,2-dichlorobenzene where 3% per volume of 1,8-diiodoctane (DIO) was added and was then left to dry for 30 min inside the glove box, without any post-deposition annealing. (b) Dark J-V characteristics of the PSC devices without and with tBuSiOH-POM.



**Figure S13** (a) J-V characteristics under 1.5 AM illumination of P3HT:IC<sub>60</sub>BA-based devices fabricated on ITO and ITO/tBuSiOH-POM substrates (see also Table S4). (b) Dark J-V characteristics of the PSC devices without and with tBuSiOH-POM.



**Figure S14** Polyhedral molecular structure of the tBuSiOH-POM in gas phase, obtained via geometry optimization at the DFT-PBE level of theory.



**Figure S15** Steady-state PL spectra of P3HT:  $IC_{60}BA$  blends on as-deposited and tBuSiOH-POM-covered (a) TiO<sub>2</sub> and (b) ZnO films.

## **Additional tables**

| Substrate                     | θ <sub>w</sub> (°) | θ <sub>i</sub> (°) | γ <sub>sp</sub> (mJ m <sup>-2</sup> ) | γ <sub>sd</sub> (mJ m <sup>-2</sup> ) | γ(mJ m <sup>-2</sup> ) |
|-------------------------------|--------------------|--------------------|---------------------------------------|---------------------------------------|------------------------|
| TiO₂                          | 45.0 (±2.0)        | 29.4 (±1.0)        | 22.93 (±0.53)                         | 35.81 (±0.07)                         | 58.74 (±0.40)          |
| TiO <sub>2</sub> /tBuSiOH-POM | 52.1 (±1.8)        | 39.3 (±1.2)        | 20.40 (±0.75)                         | 32.22 (±0.40)                         | 52.62 (±0.45)          |
| ZnO                           | 46.7 (±2.1)        | 20.6 (±0.9)        | 20.21 (±0.71)                         | 39.26 (±0.27)                         | 59.47 (±0.43)          |
| ZnO/tBuSiOH-POM               | 54.2 (±1.8)        | 29.4 (±1.0)        | 16.75 (±0.50)                         | 37.18 (±0.30)                         | 53.93 (±0.20)          |

**Table S1** Surface energy as derived from contact angle measurements of  $TiO_2$  and ZnO substrates without and with tBuSiOH-POM spin coated from a solution with concentration of 5 mg ml<sup>-1</sup>.

**TableS2.** Device characteristics of polymer solar cells having the device configuration  $FTO/TiO_2$  or ZnO without and with tBuSiOH-POM/P3HT:PC<sub>71</sub>BM/MoO<sub>x</sub>/AI (mean values and standard deviations were extracted from a batch of 8 independent devices).

| ETL                           | J <sub>sc</sub><br>(mA cm⁻²) | V <sub>oc</sub> FF<br>(V) |              | PCE<br>(%)   | R <sub>s</sub><br>(Ω cm²) | R <sub>sh</sub><br>(Ω cm²) |
|-------------------------------|------------------------------|---------------------------|--------------|--------------|---------------------------|----------------------------|
| TiO <sub>2</sub>              | 9.43 (±0.11)                 | 0.60 (±0.01)              | 0.56 (±0.01) | 3.17 (±0.12) | 3.9                       | 1807                       |
| ZnO                           | 9.80 (±0.10)                 | 0.60 (±0.01)              | 0.58 (±0.01) | 3.41 (±0.10) | 2.8                       | 1763                       |
| TiO <sub>2</sub> /tBuSiOH-POM | 10.60 (±0.15)                | 0.64 (±0.01)              | 0.65 (±0.01) | 4.41 (±0.14) | 2.1                       | 2667                       |
| ZnO/ tBuSiOH-POM              | 10.80 (±0.12)                | 0.64 (±0.01)              | 0.64 (±0.01) | 4.42 (±0.13) | 1.9                       | 2376                       |

**TableS3.** Device characteristics of polymer solar cells having the device configuration  $FTO/TiO_2$  or ZnO without and with tBuSiOH-POM/PTB7:PC<sub>71</sub>BM/MoO<sub>x</sub>/AI (mean values and standard deviations were extracted from a batch of 8 independent devices).

| ETL                           | J <sub>sc</sub><br>(mA cm <sup>-2</sup> ) | V <sub>oc</sub><br>(V) | V <sub>oc</sub> FF<br>(V) |              | R <sub>s</sub><br>(Ω cm <sup>2</sup> ) | R <sub>sh</sub><br>(Ω cm²) |
|-------------------------------|-------------------------------------------|------------------------|---------------------------|--------------|----------------------------------------|----------------------------|
| TiO <sub>2</sub>              | 14.24 (±0.17)                             | 0.71 (±0.01)           | 0.63 (±0.01)              | 6.37 (±0.15) | 2.4                                    | 2677                       |
| ZnO                           | 14.64 (±0.14)                             | 0.71 (±0.01)           | 0.64 (±0.01)              | 6.65 (±0.16) | 2.0                                    | 3674                       |
| TiO <sub>2</sub> /tBuSiOH-POM | 16.20 (±0.16)                             | 0.74 (±0.01)           | 0.67 (±0.01)              | 8.03 (±0.17) | 1.8                                    | 3921                       |
| ZnO/ tBuSiOH-POM              | 16.35 (±0.13)                             | 0.74 (±0.01)           | 0.68 (±0.01)              | 8.23 (±0.14) | 1.5                                    | 4361                       |

**TableS4.** Device characteristics of polymer solar cells having the device configuration ITO without and with tBuSiOH-POM/P3HT:IC<sub>60</sub>BA/MoO<sub>x</sub>/AI (mean values and standard deviations were extracted from a batch of 4 independent devices).

| ETL             | J <sub>sc</sub> | V <sub>oc</sub> | FF           | PCE          | Rs      | R <sub>sh</sub> |
|-----------------|-----------------|-----------------|--------------|--------------|---------|-----------------|
|                 | (mA cm⁻²)       | (V)             |              | (%)          | (Ω cm²) | (Ω cm²)         |
| ITO             | 3.69 (±0.18)    | 0.25 (±0.01)    | 0.31 (±0.01) | 0.29 (±0.20) | 21.2    | 123             |
| ITO/tBuSiOH-POM | 9.51 (±0.14)    | 0.74 (±0.01)    | 0.60 (±0.01) | 4.22 (±0.17) | 3.7     | 1620            |

**Table S5** Fitting parameters, obtained for P3HT 20 nm thick films (excitation wavelength: 410 nm. Detection wavelength: 700 nm) deposited on TiO<sub>2</sub> or ZnO substrates without and with tBuSiOH-POM.

| Substrate        | <b>A</b> <sub>1</sub> | τ <sub>1</sub> (ps) | A <sub>2</sub> | τ <sub>2</sub> (ps) | A <sub>3</sub> | τ <sub>3</sub> (ps) | <τ> (ps) |
|------------------|-----------------------|---------------------|----------------|---------------------|----------------|---------------------|----------|
| TiO <sub>2</sub> | -                     | -                   | 0.63           | 2.2                 | 0.37           | 16                  | 7.4      |
| TiO₂/tBuSiOH-POM | 0.47                  | 0.32                | 0.53           | 1.91                | -              | -                   | 1.2      |
| ZnO              | -                     | -                   | 0.61           | 2.9                 | 0.39           | 22                  | 10.3     |
| ZnO/ tBuSiOH-POM | 0.31                  | 1.5                 | 0.37           | 3.2                 | 0.32           | 23                  | 9.0      |

### **Additional references**

- 1. U. Lavrencic-Stangar, N. Groselj, B. Orel, P. Colomban, *Chem. Mater.*, 2000, 12, 3745-3753.
- 2. A. Jalil, M. Al-Daous, A. Al-Arfaj, A. Al-Amer, J. Beltramini, S. Barri, Appl. Catal. A, 2001, 207, 159-171.
- 3. A. Mazeaud, N. Ammari, F. Robert, R. Thouvenot, Angew. Chem., 1996, 35, 1961-1964.
- 4. R. Thouvenot, M. Fournier, R. Franck, C. Rocchioccioli-Deltcheff, Inorg. Chem., 1984, 23, 598-605.
- 5. M. A. Fedotov, B. Z. Pertsikov, D. K. Danovich, Polyhedron, 1990, 9, 1249-1256.
- A. Zhang, R. C. Howell, K. B. Scotland, F. G. Perez, L. Todaro, L. C. Francesconi, *Inorg. Chem.*, 2004, 43, 7691-770.
- 7. J. lijima, H. Naruke, Inorg. Chim. Acta, 2011, 379, 95-99.
- 8. S. Himeno, M. Takamoto, J. Electroanal. Chem., 2002, 528, 170-174.
- 9. S. Himeno, M. Takamoto, A. Higuchi, M. Maekawa, Inorg. Chim. Acta, 2003, 348, 57-62.
- 10. D. Barreca, G. Carta, A. Gasparotto, G. Rossetto, E. Tondello, P. Zanella, Surf. Sci. Spectra, 2001, 8, 258-268.