Supporting Information

Spatial control of upconversion emission in a single fluoride microcrystal via excitation mode and native interference effect

Dangli Gao,^{*a,b} Dan Wang,^a Xiangyu Zhang,^c Xiaojuan Feng,^a Hong Xin,^a Sining Yun^d and Dongping Tian^a*

^aCollege of Science, Xi'an University of Architecture and Technology, Xi'an,

Shaanxi 710055, China

^bShaanxi Key Laboratory of Nano Materials and Technology, Xi'an, Shaanxi 710055, China

°College of Science, Chang'an University, Xi'an, Shaanxi 710064, China

^dCollege of Materials and Mineral Resourses, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China

*Correspondence: D Gao, Email: gaodangli@163.com; D Tian, Email: dptian@xauat.edu.cn

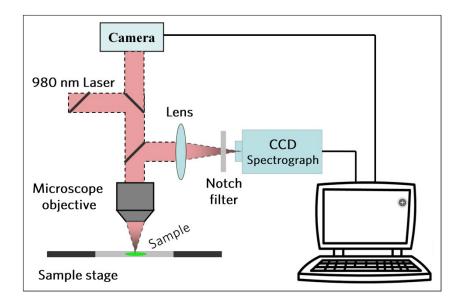


Fig. S1 Confocal microscopy system to measure the spectra of a single micro-particle. Note that the inclination of the loading platform can be adjusted continuously by the screws on the bottom.

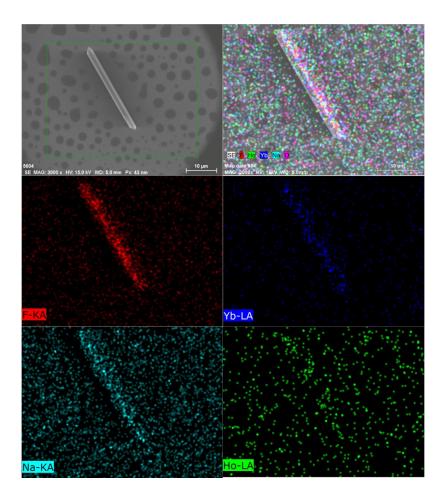


Fig. S2 Element mapping of the NaYbF₄: Ho^{3+} microcrystals.

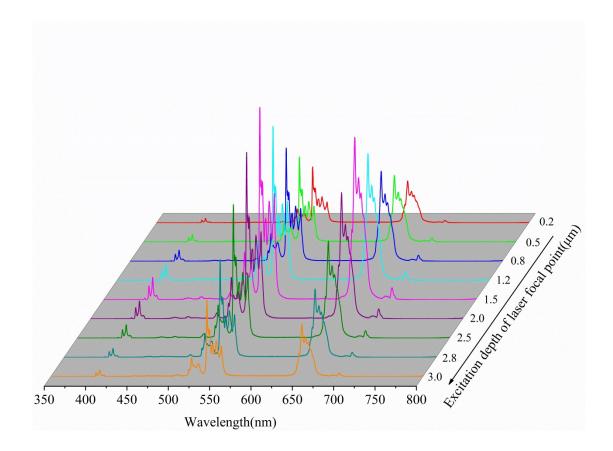


Fig. S3 Excitation depth-dependent UC emission spectra in a single short NaYF₄: Yb^{3+}/Er^{3+} microrod excited with a 980-nm laser, the laser power is 40 mW/cm⁻².