Supporting information

Solution processed Li₅AlO₄ dielectric for low voltage transistor fabrication and its application for metal oxide/quantum dot heterojunction phototransistor

Anand Sharma[‡], Nitesh k. Chourasia[‡], Anumol Sugathan^Π, Yogesh Kumar⁺, Satyabrata Jit⁺, Shun-Wei Liu[¶], Anshu Pandey^Π, Sajal Biring[¶] and Bhola N. Pal^{‡*}

- ^TSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
- [®]Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City, Taiwan 243

Fig. 1S. Grazing incidence X-ray diffraction (GIXRD) analysis of Li₅AlO₄ dielectric thin film

[‡]School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), [‡]Dept. of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India

Fig. 2S. FTIR analysis of Li₅AlO₄ dielectric thin film anneal at 350 °C, 500 °C and 700 °C

Fig. 3S: Cross-sectional scanning electron microgram of p++-Si/ α -Li₅AlO₄/ IZO film

Fig. 4S The output characteristics for TFT fabricated with a) β -Li₅AlO₄ c) a- Li₅AlO₄ dielectric. Transfer characteristics for TFT fabricated with b) β -Li₅AlO₄ d) a- Li₅AlO₄ dielectric.

Table 1S:	Comparison	with recently	/ published	other high –	k dielectric TFT
				0	

Dielectric Materials	Semico- nductor	Fabrication Route	Capacitance (C) nFcm ⁻²	Mobility (μ) cm²V ⁻¹ Sec ⁻¹	Product of capacitance and mobility (µ.C) nF V ⁻¹ Sec ⁻¹	Novelty	Reference
α-Li ₅ AlO ₄	IZO	Solution - Processed	332	21.4	7304	New TFT gate dielectric. High capacitance and mobility (μ.C) which result high current density TFT	This work
HfLaOx	ZnO	Solution - Processed	190.09	1.6	330.15	Solution processed TFT gate dielectric	1
LiOx	In ₂ O ₃	Solution - Processed	465	5.7	2650	New sol-gel derived TFT gate dielectric	2
Strontium titanate	Pentace ne, CuPc	RF magnetron sputtering	41	2.0	2.46	Flexible device	3
Strontium oxide (SrO _x)	In ₂ O ₃	Solution - Processed	350	5.6	1963	Solution processed TFT gate dielectric	4
Magnesi- um titaniumoxi de (Mg _{0.6} Ti _{0.4} O)	IZO	Solution - Processed	50	3.4	170	New sol-gel derived TFT gate dielectric	5

Fig. 5S Stability test of a α -Li₅AlO₄ dielectric TFT a) bias stress stability b) ambient atmosphere storage stability

Fig. 6S Depletion layer formation of p-PbS/n-IZO heterojunction and photogenerated e-h separation due to the effect of barrier potential.

References:

1. J. Ko, J. Kim, S. Y. Park, E. Lee, K. Kim, K.-H. Lim and Y. S. Kim, *Journal of Materials Chemistry C*, 2014, **2**, 1050-1056.

2. A. Liu, G. Liu, C. Zhu, H. Zhu, E. Fortunato, R. Martins and F. Shan, Adv. Electron. Mater, 2016, 2, n/a-n/a.

3. S. Yadav and S. Ghosh, ACS Applied Materials & Interfaces, 2016, 8, 10436-10442.

- 4. C. Fan, A. Liu, Y. Meng, Z. Guo, G. Liu and F. Shan, IEEE Transactions on Electron Devices, 2017, PP, 1-7.
- 5. Z. Yang, H. Pu, C. Cui, L. Zhang, C. Dong and Q. Zhang, IEEE Electron Device Letters, 2014, 35, 557-559.