Supporting Information

Development of fullerenes and their derivatives as semiconductors in field effect transistors: exploring the molecular design

Celebrating 50 years of Professor Fred Wudl's contributions to Organic Semiconductors

Yingshuang Zhang^a, Imran Murtaza^{b,c}, and Hong Meng^{a,b*}

a. School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China. E-mail: menghong@pkusz.edu.cn

- b. Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- c. Department of Physics, International Islamic University, Islamabad 44000, Pakistan.

1. Some relative papers based on C₆₀, C₇₀, PCBM and PC₇₁BM.

Abbreviation:

C₆₀

Alq3= tris(8-hydroxyquinoline) aluminum; BCB=divinyltetramethyldisiloxane-bis(benzocyclo-butene); BCP=bathocuproine; Bphen=bathophenanthroline; b-PS=polystyrene-based dimethylchlorosilane monolayer; CB=chlorobenzene; CYTOP=poly(perfluoroalkenyl vinyl ether); CoTMPP=5,10,15,20-tetrakis(4-methoxyphenyl) porphyrinato cobalt(II) hybrid nanosheets; DABT=4-(dimethylamino)benzenethiol; DAE=diarylethene; DCB=o-Dichlorobenzene; DIP=diindenoperylene; DPTTA=meso-diphenyltetrathia[22]-annulene[2,1,2,1]; FP=fullropyrrodine; HMDS=hexamethyldisilazane; HWE=hot-wall epitaxy; NPs=nanoparticles; ODCB=o-dichlorobenzene; ODPA=n-octadecylphosphonic acid; ODS=octadecyltrimethoxysilane; ODT=1-octadecanethiol; OTS=octadecyltrichlorosilane; NW=nano-whisker; PAC=poly(dimethylsiloxane) (PDMS)-assisted crystallization method; PB-PyDI=pyromellitic diimide based polymer; Pc=phthalocyanine; PE=polyethylene; PEG=poly(ethylene glycol); PF=poly(9,9-dioctyl-fluorenyl-2,7-diyl) end capped with N,N-bis(4-methylphenyl)-4-aniline; PFBT=Pentafluorobenzenethiol; PHDA=phosphonohexadecanoic acid; PMMA=poly(methylmethacrylate); PPV=poly(phenylene vinylene); PS=polystyrene; PTCDA=3,4,9,10-perylenetetracarboxylic dianhydride; PTmT=poly(2,5-bis(3'-dodecyl-2,2'-bithiophen-5-yl)-3,6-dimethylthieno[3,2-*b*]thiophene; PTS=phenyltrimethoxysilane; PVA= poly(vinyl alcohol); PVP=poly(4-vinylphenol); [RuCp*{mes}]₂=ruthenium(pentamethylcyclopentadienyl)(1,3,5,-trimethylbenzene) dimer; SDS= sodium dodecyl sulfate; SU8 =(epoxy photosentive commercial ink); TCB=1,2,4-trichlorobenzene; UHV =ultrahigh vacuum conditions; ZSO=zirconium-silicon oxide

Some relative papers are collected here by year. They are device engineering reports. Some of them are mentioned in the main text. In the main text, Figure 1 is extracted from the mobility presented in the second column in the following tables.

				Deposition	
Ref.	Mobility (cm ² V ⁻¹ s ⁻¹)	I _{on} /I _{off}	V _T (V)	Structure	Title
				(Measured in)	
	1993				
1	Too low to be measured			Evaporating BGBC; Si/SiO ₂ ; Cr/Au Vacuum	Conduction mechanisms in undoped thin films of C_{60} and $C_{60/70}$
2	10-4			Evaporating BGBC; Si/SiO ₂ ; Cr/Au	Fullerene Field-Effect Transistors
	Undoped: 4×10 ⁻⁵			Evaporating	Semiconductor-like carrier conduction and its
3	In: 0.03			BGBC; Si/SiO ₂ /C ₆₀ &dopant Au	field-effect mobility in metal-doped C ₆₀ thin
	Sb: 0.04			Vacuum	films
	1995	-			
4	0.08	10 ⁶		Vacuum deposition BGBC; Si/SiO ₂ ; Au Vacuum	C_{60} thin film transistors

5 6	$\mu_e = 5 \times 10^{-3}$ $\mu_e = -4 \times 10^{-3}$		40 ~0	Evaporating BGBC; Si/SiO ₂ /α-hexathienylene/C ₆₀ ; Au	①Organic Heterostructure Field-Effect Transistors; ②Organic field-effect bipolar
0	1996		ů	Vacuum	transistors
_	1990			Evaporating deposition	Transport Mechanisms in Evaporated Ceo Film
7 8	4.8×10 ⁻⁹ Air: 4×10 ⁻⁹ Vacuum: 2×10 ⁻³		2.0	BGBC; Si/SiO ₂ ; Au Vacuum deposition BGBC; Si/SiO ₂ /insulating/C ₆₀ ; Cr/Au	Evaluated by Means of Field Effect Transport studies in C_{60} and C_{60}/C_{70} thin films using metal-insulator-semiconductor field-effect
	2002		l	Vacuum or Air	
9	0.1			Vacuum deposition BGBC; Si/SiO ₂ /C ₆₀ ; Au/Ti Vacuum	Passivation effects of alumina insulating layer on C ₆₀ thin-film field-effect transistors
	2003				
10	0.56	>10 ⁸	17	Vacuum/molecular beam deposition BGBC; Si/SiO ₂ ; Ti/Au or Cr/Au Vacuum	$C_{60} \mbox{ thin-film transistors with high field-effect} mobility, \mbox{ fabricated by molecular beam} \mbox{ deposition }$
11	0.5-0.3	>10 ⁸		Vacuum/molecular beam deposition BGBC; Si/SiO ₂ ; Ti/Au or Cr/Au Vacuum	Fabrication and characterization of C_{60} thin-film transistors with high field-effect mobility
	2004		1	1	
12	0.085(linear) 0.22(photopolymerization)			Vacuum deposition BGBC; Si/SiO ₂ ; Cr/Au Vacuum	Accelerated photopolymerization and increased mobility in C ₆₀ field-effect transistors studied by ultraviolet photoelectron spectroscopy
13	Au: 5.6×10 ⁻⁷ (La@C ₈₂)/Au: 4.8×10 ⁻⁵	10 ³	17.1	Vacuum deposition BGBC; Au/Si/SiO ₂ ; (La@C ₈₂)/Au Vacuum	C_{60} field effect transistor with electrodes modified by La@C_{82}
14	Ag: 4.2×10 ⁻³ Mg/Ag: 0.064	9×10 ³ 1×10 ⁵	18.8 18.9	Vacuum deposition BGTC; Si/SiO ₂ /HMDS; Ag or Mg/Ag Vacuum	C_{60} thin-film transistors with low work-function metal electrodes
15		7.6×10 ² 1.3×10 ⁵	98 -15	35mm C ₆₀ 20mm pentacene Au Au SiO2 Si Si Si Bottom Contact(BC) Middle Contact(MC)	Fabrication of ambipolar field-effect transistor device with heterostructure of C_{60} and pentacene
16	~0.11			Molecular beam deposition generally fabricated Vacuum	Low-glancing-angle x-ray diffraction study on the relationship between crystallinity and properties of C_{60} field effect transistor
	2005	1			
17	$\mu_e=2.6 \times 10^{-4}$ (sat) $\mu_h=6.4 \times 10^{-4}$		59 -82	Vacuum deposition BGBC; Si/SiO ₂ /SAM; Cr/Au without exposing to air	Ambipolar operation of fullerene field-effect transistors by semiconductor/metal interface modification
18	$\mu_e=7 \times 10^{-3}$ $\mu_h=1.7 \times 10^{-2}$		15.6 -2	Vacuum deposition BGTC; Si/SiO ₂ /pentacene/C ₆₀ /LiF; Au Atmosphere	Ambipolar organic thin-film transistors using C ₆₀ /pentacene structure: Characterization of electronic structure and device property
19	$ \begin{array}{c} \textcircled{1}{1} \mu_{e} = 5.8 \times 10^{-3} \\ \hline (1) \mu_{h} = 3.7 \times 10^{-2} \\ \textcircled{2}{2} \mu_{e} = 1.9 \times 10^{-3} \\ \textcircled{2}{2} \mu_{h} = 3.1 \times 10^{-5} \end{array} $			1 2 80nm C ₆₀ 80nm pentacene Au Au Au 25nm pentacene Au Au SiO2 SiO2 SiO2 Si Si Si	Fabrication of a logic gate circuit based on ambipolar field-effect transistors with thin films of C_{60} and pentacene
20	(1)7.1×10 ⁻³ (lin) (1)1.2×10 ⁻² (sat) (2)4.1×10 ⁻⁵ (without) (2)1.1×10 ⁻⁴ (HMDS)	normally off 160 normally off	7 2 3 -5	thermal deposition ① BGBC; Au/polyimide/HMDS; Au ② BGBC;Si/SiO ₂ /Ba _{0.4} Sr _{0.6} Ti _{0.96} O ₃ /(HMDS);Au Vacuum	Fabrication of C_{60} field-effect transistors with polyimide and $Ba_{0.4}Sr_{0.6}Ti_{0.96}O_3$ gate insulators
21	$\mu_e=2\times10^{-3}$ ~9×10 ⁻³ $\mu_h=8\times10^{-5}$ ~3×10 ⁻⁴			Spin-coating/(di)chlorobenzene BGBC; Si/SiO ₂ /C ₆₀ &PPV Ti/Au/cap Vacuum	Facile fabrication method for p/n-type and ambipolar transport polyphenylenevinylene - based thin-film field-effect transistors by blending C_{60} fullerene
22	0h: 0.192 1h in ambient: 0.159 24 h in nitrogen 0.170	1.5×10 ⁶ 8.3×10 ⁵ 1.0×10 ⁶	29.7 35.6 33.5	Vacuum vapor deposition BGBC; Si/SiO ₂ ; Ti/Au Nitrogen or Air	Fullerene based n-type organic thin-film transistors
23	0.4~1	>104	-35	HWE BGBC; ITO/BCB/C ₆₀ ; LiF/Al Argon or Helium	High-mobility n-channel organic field-effect transistors based on epitaxially grown C ₆₀ films
24	0.08 and 0.5(after annealing) oxygen exposure: $\mu_e=4\times10^{-4}$ $\mu_h=4\times10^{-5}$			Molecular-beam deposition BGTC; Si/SiO ₂ /C ₆₀ ; Cr/Au UHV or oxygen exposure	Ultrapure C_{60} field-effect transistors and the effects of oxygen exposure
	2006	Γ	1		
25	5×10 ⁴ (undoped) 0.2(1.8mol% doped)			Vacuum deposition BGBC; Si/SiO ₂ /C ₆₀ &acridine orange; Au Vacuum	Acridine orange base as a dopant for n doping of $C_{60} \mbox{thin}$ films
26	~10 ⁻³		~70	evaporated deposition BG; Si/SiO ₂ /C ₆₀ ; Au during film growth	Analysis of transient phenomena of C_{60} field effect transistors

27	$\mu_e = 0.23$			Vacuum deposition BGBC; Si/SiO ₂ /pentacene; Au	Bottom Contact Ambipolar Organic Thin Film Transistors Based on C ₆₀ /Pentacene
-	μη 0.1 ·			Nitrogen/ Vacuum/Air NW from m-xylene/isopropyl alcohol	Heterostructure
28	0.02	normally-on	~0	BGBC; Si/SiO ₂ /C ₆₀ -NW; Ti/Au Vacuum	Electrical properties of field-effect transistors based on C_{60} nanowhiskers
	(1)6 (T _{sub} =250℃) (1)3 (T : =120℃)			Channel: HWE	High performance n-channel organic field-effect
29	$(1) 0.6 (T_{sub}=25^{\circ}C)$ (2) 0.2			(2) BGBC; Si/SiO ₂ /HMDS/C ₆₀ ; Ti/Au Vacuum	transistors and ring oscillators based on $C_{\rm 60}$ fullerene films
30	No pentacene: 0.25~1			Vacuum deposition BGTC: Al/ALQ: ((pentacene)/Cur: Mg	High-Mobility C ₆₀ Field-Effect Transistors
30	With pentacene: 2.0~4.9			Vacuum	Substrates
31	0.5~3			Channel: HWE BGTC; ITO/BCB/C ₆₀ ; LIF/AI	Influence of film growth conditions on carrier mobility of hot wall epitaxially grown fullerene based transistors
32	Highest:0.28	7.3×10 ⁶	18	Vacuum deposition BGBC; Si/SiO ₂ ; Au Vacuum	Intrinsic transport and contact resistance effect in C_{60} field-effect transistors
	·· 2 22:40 ⁻³		50.2		
33	$\mu_{e}=2.23\times10^{-4}$ $\mu_{h}=5.53\times10^{-4}$		-37.1		using C ₆₀ and amorphous spirolinked compound
				Si	
34	Eu: 0.5 Cu: 2.3×10 ⁻⁴ Pt: 2.4×10 ⁻²	Normally-on Normally-off	34	thermal deposition BGTC; Si/SiO ₂ /HMDS; Eu or Cu or Pt Vacuum	Output properties of C ₆₀ field-effect transistor device with Eu source/drain electrodes
25	0.02	Normany-on		Patterning	Patterning organic single-crystal transistor
55	0.05			Vacuum	arrays
36	~0.6			BGTC; ITO/BCB/C ₆₀ ; LiF/Al	Switching in C_{60} -fullerene based field effect transistors
	2007				
37	C_{60} : μ_e =0.32(sat) C_{60} &CuPc: μ_e =2.2×10 ⁻² ~3.1×10 ⁻⁴ C_{60} &CuPc: μ_h =1.6×10 ⁻⁶ ~1.0×10 ⁻⁴		60.4 44.8~30.7 -24.0~-1.7	thermal evaporation ring-type; Si/SiO ₂ /C ₆₀ (&CuPc); Ti/Au Vacuum	Ambipolar charge carrier transport in mixed organic layers of phthalocyanine and fullerene
38	0.074(nonpolymerized) 0.068(polymerized)		19	Vacuum deposition BCTC; Si/SiO ₂ ; Au dry box	C ₆₀ field-effect transistors: Effects of polymerization on electronic properties and device performance
	6 (T _{sub} =250℃)				(1) Characterization of highly crystalline C_{60} thin films
39 40	3 (T _{sub} =120℃) 0.6 (T _{sub} =25℃)	10 ⁶		BGTC; ITO/BCB/C ₆₀ ; LiF/Al	 Correlation of crystalline and structural
	Note: data is similar to Ref. ²⁹			glove box	properties of C_{60} thin films grown at various temperature with charge carrier mobility
41	Untreated: 2.8×10 ⁻³ ~6.6×10 ⁻⁷	$10^{3} \sim 10^{5}$	42~82	Thermally evaporated BGBC: Si/SiO ₂ /(OTS): Cr/Au	Estimation of electron traps in carbon-60 field-effect transistors by a thermally stimulated
	OTS: 1.7×10 ² ~6.1×10 ³	10 ~10°	60~76	Helium or Air	current technique
42	0.02		45	BGBC; Cr/PMMA; Au or Al in air	Fullerene thin-film transistors fabricated on polymeric gate dielectric
43	1	10 ⁵ (at 5V)	1.13	Thermally evaporated BGTC; Ti-Si/SiO ₂ /TiSiO ₂ /SiO ₂ /C ₆₀ , LiF/Al	High performance n -channel thin-film transistors with an amorphous phase C_{60} film on
L	huffer laver	. ,		Nitrogen	plastic substrate
	BCB: 3.1±0.2 (Max:5.0)	1×10 ⁷	-0.1±0.4	Thermally evaporated	High-performance and electrically stable Can
44	PMMA: 1.1±0.1	6×10 ⁶	1.2±1.3 2.1±0.4	Nitrogen	organic field-effect transistors
	OTS: 1.2±0.1	2×10 ⁶	1.8±0.6	Thermally evaporated	
45	HMDS: 1.04	1×10 ⁶	5.3 1.7	BGTC; TiSi/SiO ₂ /ZSO/SiO ₂ /(SAM)/C ₆₀ ; LiF/Al	High-performance fullerene C ₆₀ thin-film
	ODS: 1.46	2×10°	1.9	Nitrogen	anissions operating at low voltages
46	PVP: 0.27	1.6×10 ⁵	2	BGTC; ITO/polymer dielectrics/C ₆₀ ; Ba/Al	Influence of polymer dielectrics on C_{60} -based field-effect transistors
<u> </u>	רועוועוא. ט.סס	2.3×10	5.5	Thermally evaporated	Low-voltage-operating complementary inverters
47	0.68	1×10°	0.80	BGTC; TiSi/SiO ₂ /TiSiO/SiO ₂ /HMDS; Au Nitrogen	with C ₆₀ and pentacene transistors on glass substrates
48	5.9×10 ⁻³	normally-off	38	Thermally evaporated BGBC; Si/SiO ₂ ;1-Alkanethiols/Cr/Au	Output Properties of C ₆₀ Field-Effect Transistors
	ITO: 0.16	4.0×10 ⁶	36	Vacuum Thermally evaporated	
49	Au: 0.096	2.5×10 ⁶	42	BGBC; Si/SiO ₂ /C ₆₀ ; ITO or Au or Pt	Output properties of C_{60} field-effect transistors with different source/drain electrodes
	Pt: 0.14	3.3×10°	41	Vacuum	
	2000			Thermally evaporated	Ambipolar charge carrier transport in organic
50	0.07		63	BGBC; Si/SiO ₂ /OTS; Au	semiconductor blends of phthalocyanine and
				Vacuum	tullerene

51	6.8×10 ⁻²			Thermally evaporated BGBC; Si/SiO ₂ ; Au Vacuum	Bipolar transport in organic field-effect transistors: organic semiconductor blends versus contact modification
52	3.23-0.68	4×10 ⁶ ~8×10 ⁶	17.1~11.8	Thermally evaporated BGBC; Si/SiO ₂ /HMDS; Au Nitrogen	Bottom-contact fullerene C ₆₀ thin-film transistors with high field-effect mobilities
53	Best: 0.41	~10 ⁷		Thermally evaporated BGTC; Au/Cr/Si/SiO ₂ /parylene/C ₆₀ ; Au Helium	High-performance C_{60} thin-film field-effect transistors with parylene gate insulator
54 55	(1) Al(W/L=10): 1.7 ± 0.1 Al(W/L=80): 1.4 ± 0.05 Highest: 4.3 (W=L=200 μ m, Ca) (1) (2) Ca(W/L=10): 2.3 ± 0.2 Ca(W/L=80): 2.3 ± 0.1	$(0.4\pm0.1)\times10^{6}$ $(1.0\pm0.2)\times10^{6}$ $(1.0\pm0.3)\times10^{6}$ $(4.0\pm0.3)\times10^{6}$	0.3±0.1 0.2±0.1 0.2±0.1 0.1±0.1	Thermally Vacuum evaporated ① BGTC; Au/Ti/Si/SiO ₂ /Al ₂ O ₃ /BCB/C ₆₀ ; Al or Ca ② BGTC; Si/SiO ₂ /Al ₂ O ₃ /BCB/C ₆₀ ; Ca Nitrogen	(1) High-performance C_{60} n-channel organic field-effect transistors through optimization of interfaces; (2) Low-voltage C_{60} organic field-effect transistors with high mobility and low contact resistance
56	HfO ₂ /ODPA: 0.28(sat) HfO ₂ : 0.097(sat)	10 ⁵ 10 ³	0.35 0.40	Vacuum deposition BGTC; Si/HfO₂/(ODPA); LiF/Al Vacuum	Low-voltage high-performance C ₆₀ thin film transistors via low-surface-energy phosphonic acid monolayer/hafnium oxide hybrid dielectric
57	0.061 PTS: 1.22 HMDS: 1.04 ODS: 1.46	10 ⁶	1.9	Vacuum deposition BGTC; Ti-Si/Si/SiO ₂ /ZSO/SiO ₂ /insulator; LiF/Al Nitrogen	Low-voltage-operating fullerene C ₆₀ thin-film transistors with various surface treatments
58	Linear: 0.14 (highest) Sat: 0.26 (highest)	2.9×10 ⁷ 1×10 ⁷	33 32.9	Vacuum deposition BGBC; Si/SiO ₂ ; Ti/Au Vacuum	Potential barriers to electron carriers in C_{60} field-effect transistors
59	0.05~0.15			BGBC/TC; Si/SiO ₂ /C ₁₂ H ₂₅ SH; Cr/Au Vacuum	Transport properties in C_{60} field-effect transistor with a single Schottky barrier
60	0.15~0.55		0.2~4	Vacuum deposition BGBC; Al/ITO/polyaniline; Al Nitrogen	Vacuum-Processed Polyaniline–C ₆₀ Organic Field Effect Transistors
	2009	•		·	
61	$\mu_e=0.04(sat)$ $\mu_h=0.2(sat)$		66 2.3	Vacuum deposition BGTC;Si/SiO ₂ /OTS/pentacene/C ₆₀ /pentacene;Au Nitrogen	Ambipolar pentacene/C ₆₀ -based field-effect transistors with high hole and electron mobilities in ambient atmosphere
62	1.12-0.86(sat)		8.6-5.9	Vacuum deposition BGTC; Al ₉ Si ₁ /SiO ₂ /HMDS; Au _{0.9} Ni _{0.1} /Au Nitrogen	Current-gain cutoff frequencies above 10 MHz for organic thin-film transistors with high mobility and low parasitic capacitance
63	spin-cast :4.7±0.41 vapor: 0.27±0.15 (Highest: 5.3)	(3.5±1.2)×10 ⁷ (7.5±6.3)×10 ⁵	35.6±6.33 39.8±7.5	Vacuum /OTS by spin-cast or vapor BGTC; Si/SiO ₂ /OTS; Au Nitrogen	Crystalline Ultrasmooth Self-Assembled Monolayers of Alkylsilanes for Organic Field-Effect Transistors
64	~6		~11	HWE BGTC; ITO/BCB; LiF/AI Vacuum	Electrical response of highly ordered organic thin film metal-insulator-semiconductor devices
65	Ca/Al:0.22 Al:0.21 Au:0.035	5×10 ⁵	-3 0.7 22	Spin-cast/trichlorobenzene(1 wt%) BGTC; ITO/PVP; Al or Ca or Au Nitrogen	Flexible Fullerene Field-Effect Transistors Fabricated Through Solution Processing
66	Highest: 0.05	~10 ³	20	Liquid-liquid interface precipitation BGBC; Si/SiO ₂ ; Au/Ti Vacuum	Field-effect-transistor characteristics of solvate G_{60} fullerene nanowhiskers
67	0.1-0.3			Thermally deposition BGTC; Al/ITO/melamine/C ₆₀ ; Al Nitrogen	$\label{eq:scalar} Small-molecule vacuum processed \\ melamine-C_{60}, organic field-effect transistors$
68	μ _{lin} =0.0033~1.3 μ _{sat} =2.5~2.8	4×10 ⁵ ~5×10 ⁷	5.1~16.8	Vacuum deposition BGTC;Si/SiO2/HMDS/;benzenethiol/Ni-Au/Au Nitrogen	Threshold voltage control of bottom-contact n-channel organic thin-film transistors using modified drain/source electrodes
	2010	I	1		
69	6.5(lin)			HWE BGTC; ITO/BCB/C ₆₀ ; LIF/AI glove box	Dependence of Meyer–Neldel energy on energetic disorder in organic field effect transistors
70	3.2×10 ⁻² (pristine) 5.2×10 ⁻⁴ (supersonic wave) 2.4×10 ⁻³ (ultraviolet light)	~10 ~1000 ~10		NW from m-xylene/isopropyl alcohol BGBC; Si/SiO ₂ /C ₆₀ -NW; Ti/Au Vacuum or air(working)	Electron Transport Properties in Photo and Supersonic Wave Irradiated C ₆₀ Fullerene Nano-Whisker Field-Effect Transistors
71	Lactose:0.055 Glucose:0.085 Guanine:0.12 Cytosine:0.09 Adenine:5.5(HWE) Thymine:0.5			Thermally deposition BGTC; Al/Dielectric/C ₆₀ ; Al or Au	Environmentally sustainable organic field effect transistors
72	BC: μ_e =5.28×10 ⁻³ BC: μ_h =4.2×10 ⁻² MC: μ_e =5.5×10 ⁻² MC: μ_h =5.45×10 ⁻² TC: μ_e =2.44×10 ⁻² TC: μ_h =4.5×10 ⁻³		79 14.5 73 -4.3 68.5 -30	35nm C ₆₀ 35nm C ₆₀ 20nm pentacene 35nm C ₆₀ Sheet 20nm pentacene Sheet Sheet Gate Sheet Bottom Contact(BC) Middle Contact(MC) OSCs are deposited by thermal evaporation, test atmosphere is controlled with 0.1 ppm O ₂ , Poly[3,4-ethylene dioxythiophene]:Poly(styrenesulfonate) (PEDOT:PSS) acts as Gate and Source/Drain electrodes.	Influence of device geometry in the electrical behavior of all organic ambipolar field effect transistors

73	Ba: 1.15 Al: 0.97 Au: 0.126	3.2×10 ⁵ 2.8×10 ⁵ 6.7×10 ⁴	29 30 36	9 0 6	Thermally deposition BGTC; ITO/polystyrene/C ₆₀ ;Ba/Al or Al or Au Nitrogen	Properties of C_{60} thin film transistor based on polystyrene
74	2011 100℃:~1				Thermally deposition	Electric field and grain size dependence of
75	230°. 3 0nm Alq3: 1.71×10°. 5nm Alq3: 1.12×10°. 10nm Alq3: 1.28×10°. 15nm Alq3: 1.88×10°.	10 ⁴ 10 ² 10 ² 10 ²	12 11 10 21	8 1 0 1	thermally evaporated BGTC; Si/SiO ₂ /PMMA/C ₆₀ /Alq3; Al Ar atmosphere	Enhanced performance of C ₆₀ organic field effect transistors using a tris(8-hydroxyquinoline) aluminum buffer layer
76	BCB: 5.1 Parylene: 0.046 AlO _x -BCB: 3.5 AlO _x -PE: 2.9 AlO - Adenine: 3.2	>10 ⁶ ~10 ^{2.5} ~10 ^{2.5} >10 ³ ~10 ³	1: -3 -0 0.	3.2 3.5 0.003 1.39 0.25	Channel: HWE BGTC; Al/BCB; Al TGBC; Al/Parylene-C; Al BGTC; Al/AlO _x /BCB or PE or Adenine; Al	High mobility, low voltage operating C ₆₀ based n-type organic field effect transistors
77	Ag: 2.74 LiF/Ag: 5.07	10		0.23	Thermally deposition BGTC; ITO/PMMA/pentacene/C ₆₀ ; (LiF)/Ag	Mobility Improvement in C ₆₀ -Based Field-Effect Transistors Using LiF/Ag Source/Drain Electrodes
78	Solution: 0.6~0.8(highest:0.86) Vacuum: 0.7~0.9	(4×10 ⁶)	(3	3)	Drop cast and dry/Vacuum deposition BGTC; Si/SiO ₂ /PTS; LiF/Al Nitrogen	Novel Solution Process for High-Mobility C_{60} Fullerene Field-Effect Transistors
79	1.5 0.0012 0.005				evaporation BGTC; Si/SiO ₂ /OTS/C ₆₀ ; Au BGTC; Si/SiO ₂ /OTS/DATTF/C ₆₀ ; Au BGBC; Si/SiO ₂ /OTS/C ₆₀ ; DATTF/C ₆₀ BGBC; Si/SiO ₂ /OTS/C ₆₀ ; DATTF \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	Organic Electrodes Consisting of Dianthratetrathiafulvalene and Fullerene and Their Application in Organic Field Effect Transistors
	2012	1				
80	4.02 ± 0.35	(4.68±1.04)×1	.0 ⁶		Vacuum deposition BGTC; Si/SiO ₂ , BCB; Au Nitrogen	2-(2-Methoxyphenyl)-1,3-dimethyl-1H-benzoimi dazol-3-ium lodide as a New Air-Stable n-Type Dopant for Vacuum-Processed Organic Semiconductor Thin Films
81	Only C ₆₀ : 0.38 C ₆₀ /Bphen: 0.50 Pentacene/C ₆₀ : 4.11 Pentacene/C ₆₀ /Bphen: 5.17	4.4×10 ³ 3.1×10 ³ 19.5 25	1: 1: 1: 1:	3 1 3 2.5	Thermal evaporation BGTC; ITO/PMMA/pentacene/C ₆₀ ; Bphen/Ag Nitrogen	A high mobility C_{60} field-effect transistor with an ultrathin pentacene passivation layer and bathophenanthroline/metal bilayer electrodes
82	0.17±0.02~0.11±0.02		1.4±0.	.1~3.8±0.1	Vacuum deposition BGTC; Si/SiO₂/HMDS; Au Nitrogen	Direct structuring of C_{60} thin film transistors by photo-lithography under ambient conditions
83	Ti: 1.94 Ti/Pt: 2.09	0.61×10 ⁶ 1.69×10 ⁶	0. 1.	.51 .01	Thermal evaporation BGTC; Ti/(Pt)/Si/SiO ₂ /AlO _x /SAM; Au Nitrogen	Engineering the metal gate electrode for controlling the threshold voltage of organic transistors
84	$10^{-5} (\mu_e)$ $10^{-6} (\mu_h)$				Droping BGBC;Si/SiO₂/HMDS/C₅₀&CoTMPP Au Nitrogen	Fullerene/Cobalt Porphyrin Hybrid Nanosheets with Ambipolar Charge Transporting Characteristics
85	Needles:5.2±2.1(average) ~11 (highest) Ribbons:3.0±0.87(average)	>10 ⁵ >10 ⁶	1! 30	5~43 6~85	Solution Grown (Single Crystals) BGTC; Si /SiO ₂ /BCB/C ₆₀ ; Au Nitrogen	High-Mobility Field-Effect Transistors from Large-Area Solution-Grown Aligned C_{60} Single Crystals
86	Highest: 0.081	>104			Drop-casting or dip-coating deposition BGBC; Si /SiO ₂ /C ₆₀ ; Cr/Au Nitrogen	On the fabrication of crystalline $C_{\rm 60}$ nanorod transistors from solution
87	0.4	6×10 ⁴	2.	.8	Vacuum deposition BGTC; Si/SiO ₂ /CYTOP; Al Nitrogen	Organic nonvolatile memory transistors based on fullerene and an electron-trapping polymer
88	Unpurified C_{60} : No dopant: 0.38 \pm 0.02 Dopant: 0.48 \pm 0.03 \sim 0.67 \pm 0.02 purified C_{60} : No dopant: 1.62 \pm 0.03 Dopant: 1.3 \pm 0.1 \sim 1.73 \pm 0.02	1×10 ⁶ 1×10 ⁵ -1×10 ⁶ 3×10 ⁶ 70-3×10 ⁶	17.9 4.7 <u>±</u> 4.7 <u>±</u> -0.4	9±0.8 ±0.6~15±1 ±0.3 ↓±0.9~4.7±0.3	Evaporation or co-evaporation with dopant of $[RuCp^*(mes)]_2$ BGTC; Si/SiO ₂ /BCB/C ₆₀ (&Dopant); Al Nitrogen	Passivation of trap states in unpurified and purified C_{60} and the influence on organic field-effect transistor performance
89	1.4				drop-casted to solution patterning SAM BGTC; Si/SiO ₂ /PTS; LiF/Al	Solution-Processed C ₆₀ Single-Crystal Field-Effect Transistors
90	Chlorobenzene:0.16 m-Xylene:0.083 Tetrahydronaphtalene:0.18 1,2,4-Trichlorobenzene: 0.86	1.2×10^{6} 1.1×10^{6} 3.6×10^{5} 3.9×10^{6}	5. 3. 5. 1.	.2 .6 .3 .5	Vacuum-drying from various solvents BGTC; Si/SiO₂/HMDS; LiF/Al Nitrogen	Solvent Dependence of Vacuum-Dried C ₆₀ Thin-Film Transistors
91	0.58	10 ⁵	-C	0.1	HWE TGBC; Al/Parylene-C/C ₆₀ ; Al Nitrogen	Strain induced anisotropic effect on electron mobility in C_{60} based organic field effect transistors
	2013	•				
92	0.08±0.01(sat) 0.05±0.01(lin)		1.	.2±0.08	Evaporation deposition BGTC; Al/Al ₂ O ₃ /cellulose/C ₆₀ ; Al Glove box	Cellulose as biodegradable high-k dielectric layer in organic complementary inverters

93	μ _e =0.18 μ _h =0.28			Au 25nm C ₆₀ Au 20nm pentacene 100nm SiO ₂ +100nmSi ₃ N ₄ +COC p-doped Si gate	Dual Channel Operation Upon n-Channel Percolation in a Pentacene-C ₆₀ Ambipolar Organic Thin Film Transistor
94	No buffer:0.19 TPBi:0.25 BCP:0.52 Bphen:0.65	0.14×10 ⁵ 0.34×10 ⁵ 0.66×10 ⁵ 1.25×10 ⁵	35 26 27 25	Au Au FPBi BCP PMMA ITO coated glass	Effect of organic buffer layers on the performance of n-type organic field-effect transistor based on C ₆₀ active layer
95	No Pentacene: 0.213 Pentacene (2nm): 1.01	10 ³ 10 ⁴	3 11	Al Al C ₆₀ Pentacene(2nm) PMMA ITO glass	Enhanced performance of C_{60} N-type organic field-effect transistors using a pentacene passivation layer
96	μ _e =2.8 μ _h =0.3			AuAuPentacene(10nm) $C_{60}(6nm)$ Pentacene(nMLs)SiO2(300nm)Si(p++)	Enhancing crystallinity of C_{60} layer by thickness-control of underneath pentacene layer for high mobility C_{60} /pentacene ambipolar transistors
97	Cocrystals of C ₆₀ -DPTTA μ_e =0.01 μ_h =0.3			Drop-casting/chlorobenzene BGTC; Si/SiO ₂ ; Au Vacuum	Fullerene/Sulfur-Bridged Annulene Cocrystals: Two-Dimensional Segregated Heterojunctions with Ambipolar Transport Properties and Photoresponsivity
98	2.4-2.2	10 ⁷ ~10 ⁸	0.4~0.6	Inkjet-printing and vacuum drying / TCB TC; Si/SiO ₂ /CYCLOTENE; Al or Au or Ag	High performance inkjet-printed C ₆₀ fullerene thin-film transistors: Toward a low-cost and reproducible solution process
99	3.3×10 ⁻⁶ (dark); 1.5×10 ⁻⁴ (illumination) 7.2×10 ⁻⁵ (dark); 1.4×10 ⁻³ (illumination) 2.8×10 ⁻³ (dark);(illumination)			evaporated BCTC; Si/SiO ₂ /PdPc/C ₆₀ ; Au BCTC; Si/SiO ₂ /C ₆₀ /PdPc; Au BCTC; Si/SiO ₂ /C ₆₀ ; Au Vacuum with or without illumination	Influence of donor-acceptor layer sequence on photoresponsive organic field-effect transistors based on palladium phthalocyanine and C_{60}
100	1 day: 1.110 14 days: 0.669	10 ³ 10 ⁴	0 7	Thermally evaporated BGTC;Al/Aloe vera + 1.5wt%SiO ₂ NPs/C ₆₀ ; Al Exposure to open air	N-Type Organic Field-Effect Transistor Based on Fullerene with Natural Aloe Vera/SiO ₂ Nanoparticles as Gate Dielectric
101	Al: 1.82(highest) dimer/Al: 2.23(highest)	1×10 ⁶ 2×10 ⁶	4.6 5.0	Thermally evaporated BGTC; Si/SiO ₂ /BCB; (rhodocene dimer)/Al Nitrogen	Reduction of contact resistance by selective contact doping in fullerene n-channel organic field-effect transistors
102	As-grown: 3.0 (±2.9)×10 ⁻¹ (Heighest: 1.01) Photo-exposed:4.7(±3.9)×10 ⁻³	10 ⁻⁴ 10 ⁻³	21.5(± 3.8) 20.4(±5.5)	Drop-casting/ nanorods in m-DCB + ethanol BGBC; Si/SiO ₂ /C ₆₀ ; Cr/Au Nitrogen	Solution-Based Phototransformation of C_{60} Nanorods: Towards Improved Electronic Devices
103	No pentacene: 0.014 Pentacene(Vacuum):1 Pentacene(Air): 10	~5×10 ² ~3×10 ² 1×10 ³	25 36 5.9	Thermally evaporated BGTC; Au/silk fibroin/(pentacene)/C ₆₀ ; Au Vacuum or Air	Solution-based silk fibroin dielectric in n-type C ₆₀ organic field-effect transistors: Mobility enhancement by the pentacene interlaver
	2014	1.10	0.0		
104	Height: ~1			HWE BGTC; Al/Parylene; Al(encapsulated) Air	Air stability of C_{60} based n-type OFETs
105	0.32	6×10 ³	2.2	drop-casting/DCB BGTC; Si/SiO2/BCB; Al Nitrogen	Comparative Study of the N-Type Doping Efficiency in Solution-processed Fullerenes and Fullerene Derivatives
106	BG: 0.1 TG: 0.2 dual gate: 0.9	~1×10 ³ ~2×10 ³ ~1×10 ⁴	20.7~34.6 14.3~0.1 11 5~8 5	HWE under vacuum TG, BG or dual gate; Al/Parylene; Al Nitrogen	Geometrical Structure and Interface Dependence of Bias Stress Induced Threshold Voltage Shift in Con-Based OFFTs
107	10 ⁻⁴ Pa: 0.199±0.020 10 ⁻³ Pa: 0.204±0.015 10 ⁻² Pa: 0.195±0.017 10 ⁻¹ Pa: 0.090±0.013	$10^{5} \sim 10^{7}$ $10^{5} \sim 10^{7}$ $10^{5} \sim 10^{7}$ $10^{5} \sim 10^{7}$	11.9±0.8 7.2±1.0 8.7±0.7 13.2±1.2	Deposition under different pressure BGTC; Si /SiO ₂ /C ₆₀ , Au Vacuum	Influence of Deposition Pressure on the Film Morphologies, Structures, and Mobilities for Different-Shaped Organic Semiconductors
108	No DIP: 0.21±0.10 DIP: 2.62±0.32(Max:2.92)	3×10 ⁴ 4×10 ⁵	17 5	Deposition under different pressure BGTC; Si/SiO ₂ /(DIP)/C ₆₀ , Cu Vacuum	Interface optimization using diindenoperylene for C_{60} thin film transistors with high electron mobility and stability
109	~1.6(lin)			HWE BGTC; ITO/BCB/C ₆₀ ; LiF/Al Vacuum	Origin of Electric Field Dependence of the Charge Mobility and Spatial Energy Correlations in Cen-Based Field Effect Transistors
110	needle crystals: 0.08±0.04 (highest): 0.34±0.13	>10 ⁵	15~43	Crystals grown from m-xylene(/CCl ₄) BGTC; Si/SiO ₂ /BCB/C ₆₀ , Au	Solution-grown aligned C ₆₀ single-crystals for field-effect transistors
	2015	>10	50 65	Nitrogen	
111	Highest: 0.38	5.3×10 ⁵	21.2	Vacuum deposition BGTC; Si/SiO ₂ /PVA/OTS/C ₆₀ /BCP, Al	A striking performance improvement of fullerene n-channel field-effect transistors via synergistic interfacial modifications
112	Average(Highest) m-xylene:0.07(0.155) CS ₂ :1.24(1.70) ODCB:0.3(1.06)	10 ⁴ ~10 ⁵	40~60	PAC method /m-xylene, CS ₂ , or ODCB BGTC; Si/SiO ₂ ; Au Nitrogen	A Facile PDMS-Assisted Crystallization for the Crystal-Engineering of C ₆₀ Single-Crystal Organic Field-Effect Transistors
113	3.9×10 ⁻² (dark) 6.7×10 ⁻³ (air)		45	Vacuum deposition BGTC; Si/SiO ₂ /OTS/C ₆₀ /PbPc, Au Air or dark box	Enhanced performance of isotype planar heterojunction photoresponsive organic field-effect transistors by using Ag source-drain electrodes

114	thermally anneal 50℃:0.002±0.001 90℃: 0.027±0.002 100℃: 0.055±0.004	~10 ⁴ ~10 ⁵ ~10 ⁶	2.93 3.20 2.39	Spin-coating/ dichlorobenzene BGBC; Si/SiO ₂ /PTS/C ₆₀ ; graphene Nitrogen	Solution-processed n-type fullerene field-effect transistors prepared using CVD-grown grapheme electrodes: improving performance with thermal annealing
115	(1) with PbPc:2.77×10 ⁻¹ /6.64×10 ⁻¹ (2) with PbPc:2.41×10 ⁻⁵ /6.93×10 ⁻⁴ (1) without PbPc: 2.48×10 ⁻² /- (2) without PbPc: 1.79×10 ⁻³ /-		6.80/6.77 28.7/14.3 14.1/- 29.5/-	Vacuum deposition (1) BGTC; ITO/PVA/C ₆₀ /(PbPc), Au (2) BGTC; Si/SiO ₂ /OTS/C ₆₀ /(PbPc), Au In the dark/under illumination	Ultrahigh near infrared photoresponsive organic field-effect transistors with lead phthalocyanine/C ₆₀ heterojunction on poly(vinyl alcohol) gate dielectric
116	ODT: 0.15/0.88 (lin/sat↓) PFBT: 0.24/1.27 DABT: 0.3/1.52 No thiol derivatives: 0.12/0.56	6×10 ⁴ 7×10 ⁴ 9×10 ⁴ 2.5×10 ⁵	10.1 8.5 6.3 10.5	Vacuum deposition BGBC; Al/SU8/C ₆₀ ; thiol derivatives/Al Nitrogen	Improvement of n-type OTFT electrical stability by gold electrode modification
117	1.05	5.65×10 ²	2.96	Vacuum deposition BGTC; Al/PVA/SDS/C ₆₀ /(encapsulation); Au Air	Poly(Vinyl Alcohol) Gate Dielectric Treated With Anionic Surfactant in C_{60} Fullerene-Based n-Channel Organic Field Effect Transistors
	2017			-	
118	5.6	>10 ⁵	4.9	Drop/CCl ₄ + <i>m</i> -xylene BGTC; Si /SiO ₂ /BCB/C ₆₀ ; Au Nitrogen	Enhanced performance of field-effect transistors based on C_{60} single crystals with conjugated polyelectrolyte
119	Pure C ₆₀ : 2.43×10 ⁻² (sat) Heterojunction:1.43×10 ⁻³ (sat)		37	Evaporation deposition BGTC; Si/SiO ₂ /C ₆₀ /(PTCDA:AlClPc:PbPc); Au in the dark or illumination	Towards high performance broad spectral response fullerene based photosensitive organic field effect transistors with tricomponent bulk heterojunctions

C₇₀

Ref.	Mobility (cm ² V ⁻¹ s ⁻¹)	I _{on} /I _{off}	V _T (V)	Deposition Structure Measured in	Title
	1996				
120	2×10 ⁻³	10 ⁵	27	Vacuum deposition BGBC; Si/SiO ₂ ; Au/Cr Vacuum	C ₇₀ thin film transistors
	2005				
22	0h: 0.060 1h in ambient: 0.042 24 h in nitrogen 0.041	3.9×10 ⁵ 1.5×10 ⁵ 1.2×10 ⁵	34.7 40.1 42.2	Vacuum vapor deposition BGBC; Si/SiO ₂ ; Ti/Au Nitrogen or Air	Fullerene based n-type organic thin-film transistors
	2013				
97	Cocrystals of C ₇₀ -DPTTA μ_e =0.05 μ_h =0.07			Drop-casting/chlorobenzene BGTC; Si/SiO ₂ ; Au Vacuum	Fullerene/Sulfur-Bridged Annulene Cocrystals: Two-Dimensional Segregated Heterojunctions with Ambipolar Transport Properties and Photoresponsivity
	2014				
105	0.94	3×10 ⁴	3.8	drop-casting/DCB BGTC; Si/SiO ₂ /BCB; Al Nitrogen	Comparative Study of the N-Type Doping Efficiency in Solution-processed Fullerenes and Fullerene Derivatives

PCBM

Ref.	Mobility (cm ² V ⁻¹ s ⁻¹)	I _{on} /I _{off}	V _T (V)	Deposition Structure Measured in	Title
	2003				
121	Highest: 4.5×10 ⁻³		41	Spin-coating/ chloroform BGTC; Au/Ti/resin; Ca or Al or Au Under ambient conditions (sealed)	Solution-Processed Organic n-Type Thin-Film Transistors
	2004				
122 123	$\mu_e=1\times 10^{-2}$ $\mu_h=8\times 10^{-3}$	10 ⁶ 10 ⁶		Spin-coating/ chlorobenzene BGBC; Si/SiO ₂ /HMDS/PCBM; Ti/Au Vacuum	① Ambipolar Organic Field-Effect Transistors Based on a Solution-Processed Methanofullerene; ② Organic complementary-like inverters employing methanofullerene-based ambipolar field-effect transistors
124	9×10 ⁻²	10 ⁴		Spin-coating/ chlorobenzene BGTC; ITO/PVA/PCBM; Cr Argon	Nonvolatile organic field-effect transistor memory element with a polymeric gate electret
125	$\mu_e=1 \times 10^{-2}$ $\mu_h=8 \times 10^{-3}$	~10 ⁶ ~10 ⁶		Spin-coating/ chlorobenzene BGBC; Si/SiO ₂ /HMDS/PCBM; Ti/Au Vacuum	Organic complementary-like inverters employing methanofullerene-based ambipolar field-effect transistors

	2005				
126	0.02-0.1	~4×10 ³	13.6 E	pin-coating/ chlorobenzene GTC or BGBC; Al-Nd/insulator; Ca, Mg, Al, Ag, Au; ir(with protector)	All-solution-processed n-type organic transistors using a spinning metal process
127	PVA: $\mu_e = 5 \times 10^{-4}$ BCB-Au: $\mu_e = 5 \times 10^{-5}$ BCB-Au: $\mu_h = 1 \times 10^{-5}$ BCB-LiF/AI: $\mu_e = 10^{-4}$ PVP: poor transport properties	7 4		Spin-coating/ chlorobenzene BGTC; ITO/dielectric/PPV&PF&PCBM LiF/AI or Au	Correlation between morphology and ambipolar transport in organic field-effect transistors
128	0.05-0.2	7.5×10 ² ~2×10 ³	-20~7	Spin-coating/ chlorobenzene BGTC; ITO/BCB or PVA/PCBM; Cr or LiF/Al Argon	Fabrication and characterization of solution-processed methanofullerene-based organic field-effect transistors
129	0.024			Spin-coating/ chloroform BGTC; Si/SiO ₂ ; Au	Relation between carrier mobility and cell performance in bulk heterojunction solar cells consisting of soluble polythiophene and fullerene derivatives
130	РСВМ :10 ⁻³ РСВМ&РЗНТ: 10 ⁻⁴			Spin-coating/ chloroform BGTC; Si /SiO ₂ /insulator/PCBM(P3HT); Al Nitrogen	Study of field effect mobility in PCBM films and P3HT:PCBM blends
	2006				
131	$\mu_e=2.0\times10^{-3}$ $\mu_h=1.7\times10^{-3}$			Spin-coating/ chlorobenzene BGBC; Si /SiO ₂ /PCBM&P3HT Al Nitrogen	Ambipolar organic field-effect transistors fabricated using a composite of semiconducting polymer and soluble fullerene
132	$\begin{array}{l} \mu_{e} = \sim 10^{-6} \sim 10^{-2} \\ \mu_{h} = \sim 10^{-3} \sim 10^{-4} \end{array}$			Spin-coating/ chloroform BGTC; Si/SiO ₂ /PCBM(&P3HT); Au Vacuum	Field effect measurements on charge carrier mobilities in various polymer-fullerene blend compositions
133	~10 ⁻⁴ -10 ⁻⁶			Spin-coating/ chloroform BGBC; Si /SiO ₂ ; Au Vacuum	Investigations of electron injection in a methanofullerene thin film transistor
134	PCBM-Au:0.008 PCBM-Mg:0.01 PCBM&P3HT:μ _e =7×10 ⁻⁵ PCBM&P3HT:μ _h =1×10 ⁻⁴			Spin-coating/ chloroform BGTC; Si /SiO ₂ /PCBM(&P3HT); Au or Mg Vacuum	Investigations of the effects of tempering and composition dependence on charge carrier field effect mobilities in polymer and fullerene films and blends
135	Insulator PVA: 10 ⁻² BCB: 10 ⁻²			Spin-coating/ chlorobenzene BGTC; ITO/insulator/PCBM&PPV LiF/Al Argon	Photoresponse of Organic Field-Effect Transistors Based on Conjugated Polymer/Fullerene Blends
	2007				
136	pure PCBM: 0.01	>104	20~38	Spin-coating/chloroform BGTC; Si/SiO ₂ /PCBM(&P3HT); Au Vacuum	Ambipolar Transport in Field-Effect Transistors Based on Composite Films of Poly(3-hexylthiophene) and Fullerene Derivative
137	1.1×10 ⁻⁵			Spin-coating/chloroform BG BC or TC; Si/SiO ₂ ; Au or Al Vacuum	Ambipolar Field-Effect Transistors Based on Poly(3-hexylthiophene)/Fullerene Derivative Bilayer Films
138	10 ⁻³ ~10 ⁻⁴ (sət)	~104	~20(electron) ~5(hole)	Spin-coating/chlorobenzene BGBC; Si/SiO ₂ /HMDS/PCBM(&PPV); Ti/Au Vacuum or Nitrogen	Electro-optical circuits based on light-sensing ambipolar organic field-effect transistors
139	o-Xylene: 2×10 ⁻² Chlorobenzene: 8×10 ⁻³			Spin-coating/solvent BGBC; Si/SiO ₂ /HMDS; Au Nitrogen	Organic Field-Effect Devices as Tool to Characterize the Bipolar Transport in Polymer-Fullerene Blends: The Case of P3HT-PCBM
140	8.6×10 ⁻³	1.5×10 ⁵	43.0	Spin-coating/chloroform BGTC; Si/SiO ₂ /HMDS; Au Vacuum	Unipolarization of ambipolar organic field effect transistors toward high-impedance complementary metal-oxide-semiconductor circuits
141	0.02~0.034 4.	5×10 ⁵ ~1.42×10 ⁶		Spin-coating/chloroform BGBC; Si/SiO ₂ /HMDS; Ti/Au; Nitrogen	Solution-Processed n-Type Organic Field-Effect Transistors With High ON/OFF Current Ratios Based on Fullerene Derivatives
	2008				
142	Vaccum: 0.025 Air: Not active	2×10 ⁴	33	Spin-coating/ chloroform BGTC; Si/SiO ₂ /HMDS; Au Vacuum/Air	High-Performance n-Type Organic Thin-Film Transistors Based on Solution-Processable Perfluoroalkyl-Substituted C ₆₀ Derivatives
143	0.21	>104	7	Spin-coating/ chlorobenzene BGTC; ITO/BCB; Ca/Al Nitrogen	High mobility n-channel organic field-effect transistors based on soluble C ₆₀ and C ₇₀ fullerene derivatives
144	Au: 0.0081 Al: 0.0120 Ca/Al: 0.0227 Cs ₂ CO ₃ /Al: 0.0445	10 ³ 10 ⁶ 10 ³ 10 ³	4.87 3.15 0.74 -2.30	Spin-coating/ chloroform BGTC; ITO/PVP; S/D Nitrogen	Improved performance in n-channel organic thin film transistors by nanoscale interface modification
145	Dark: 2.9×10 ⁻⁵ Light: 3.7×10 ⁻⁵	~10 ⁴	24 20	Spin-coating/ chloroform BGBC or BGTC; Si/SiO ₂ /HMDS; Au Vacuum	Light illumination effects in ambipolar FETs based on poly(3-hexylthiophene) and fullerene derivative composite films
146	μ_e =8.9×10 ⁻³ (lin) μ_h =5.7×10 ⁻³ (lin)			Spin-coating/CB(PCBM)&chloroform(P3HT) BGMC; Au/Ti/Si/SiO ₂ /PCBM/TiO _x /P3HT; Al Nitrogen	Multilayer bipolar field-effect transistors
	2009	·			
147	2.8×10 ⁻²			Spin-coating/ chloroform BGTC; Si/SiO ₂ /PCBM/TiO _x ; Al Nitrogen	Enhanced Performance of Fullerene n-Channel Field-Effect Transistors with Titanium Sub-Oxide Injection Layer

148	0.028			Spin-coating/chloroform BGTC; Si/SiO ₂ /OTS; Ca/Al Nitrogen	Heteroanalogues of PCBM: N-Bridged Imino-PCBMs for Organic Field-Effect Transistors
149	0.10-0.14	1×10 ⁴ ~2×10 ⁵	0.27~0.38	Spin-coating/ chlorobenzene BGTC;Ti/Au/Si/SiO ₂ /HfO ₂ /BCB;Ca Nitrogen or air	Low-voltage solution-processed n-channel organic field-effect transistors with high-k HfO ₂ gate dielectrics grown by atomic layer deposition
150	0.03		0.1	Spin-coating/ chlorobenzene BGTC; Al/AlO _x /PHDA; Al vacuum	Solution processed low-voltage organic transistors and complementary inverters
151	10 ⁻⁵ (lin)		0-10	Spin-coating/ chlorobenzene BGTC; Al/BCB; Al	Studies of charge transfer processes across donor-acceptor interface using a field effect transistor geometry
152	Ca: N2:0.12 ; Air:No N2:1 Au: N2:0.08 ; Air:0.04 N2:1 Ca/Au: N2:0.12 ; Air:0.06 N2:1	5×10 ⁵ ;Air: No 2×10 ⁵ ;Air: 1×10 ⁵ 1×10 ⁶ ;Air: 3×10 ⁵	N ₂ :2.1;Air: No N ₂ :4.6;Air: 6.7 N ₂ :2.1;Air: 5.4	Spin-coating/ chlorobenzene BGTC;Ti/Au/Si/SiO₂/BCB;Ca or Au or Ca/Au Nitrogen or air	Study of electrical performance and stability of solution-processed n-channel organic field-effect transistors
153	µ _e =5.8×10 ⁻² (140°C anneal) µ _h =7.2×10 ⁻² (140°C anneal)			Spin-coating BGTC; Si/SiO ₂ /PCBM&PTmT Ag	Thermal annealing induced bicontinuous networks in bulk heterojunction solar cells and bipolar field-effect transistors
	2010				
154	$\begin{array}{llllllllllllllllllllllllllllllllllll$	2.3 1.3×10 ² 1.6 1.6×10 ⁵ 1.5×10 ⁵	- 35 -9 40 38 29 45~74	Spin-coating/chloroform BGMC; Si/SiOz/SAM/PCBM/(P3HT); LiF/Au Vacuum	Ambipolar Transport in Bilayer Organic Field-Effect Transistor Based on Poly(3-hexylthiophene) and Fullerene Derivatives
155	0.13	6×10 ⁴	25	Spin-coating/chloroform BGTC; Si/SiO ₂ /OTS; Au Nitrogen	High-Performance Solution-Processed n-Channel Organic Thin-Film Transistors Based on a Long Chain Alkyl-Substituted C ₆₀ Derivative Central State Central State
156	0.125	4.67×10 ⁶	19.10	Spin-coating/chlorobenzene BGTC; Si/SiO ₂ /BCB; Au Nitrogen	Use of a 1H-Benzoimidazole Derivative as an n-Type Dopant and To Enable Air-Stable Solution-Processed n-Channel Organic Thin-Film Transistors
	2011				
157	0.09		9.0	Spin-coating/ chlorobenzene BGTC; Si/SiO ₂ /BCB; Au or Al Nitrogen, Vacuum or Air	Soluble fullerene derivatives: The effect of electronic structure on transistor performance and air stability
	2012				
158	~0.01(pure PCBM)			Spin-coating/ o-dichlorobenzene BGBC; Si/SiO ₂ /HMDS/PCBM&polymer Au Nitrogen	Ambipolar charge transport in polymer:fullerene bulk heterojunctions for different polymer side-chains
159	0.024~0.054	8.0×10 ⁵ ~2.2×10 ⁶	2.18~2.9	Spin-coating/ chloroform BGTC; Si/SiO ₂ /OTS/PCBM; Al Nitrogen	Effects of direct solvent exposure on the nanoscale morphologies and electrical characteristics of PCBM-based transistors and photovoltaics
160	Ca/Al: 0.104 Au: 0.051	3.5×10 ⁶ 4.6×10 ⁶	8 12	Spin-coating / chloroform or DCB BGTC; Si/SiO ₂ /BCB; Ca/Al or Au Nitrogen	Evaluation of structure–property relationships of solution-processible fullerene acceptors and their n-channel field-effect transistor performance
161	Highest: 0.044	4.1×10 ⁴	-2.61	Spin-coating / chloroform BGTC; ITO/PVP/PCBM/PEG; Al Nitrogen	Simple source/drain contact structure for solution-processed n -channel fullerene thin-film transistors
162	3×10 ⁻³	10 ³	20	Spin-coating/ chlorobenzene BGTC; Si /SiO ₂ /HMDS/PCBM&PB-PyDI Al Vacuum	Synthesis and Characterization of a Pyromellitic Diimide-Based Polymer with C- and N-Main Chain Links: Matrix for Solution-Processable n-Channel Field-Effect Transistors
	2013	•	•		
163	2×10 ⁻⁸ ~3×10 ⁻⁸			Spin-coating BG; Si /SiO ₂ /HMDS/PCBM; Au Nitrogen	Microstructure and Optoelectronic Properties of P3HT-b-P4VP/PCBM Blends: Impact of PCBM on the Copolymer Self-Assembly
164	~0.04			Spin-coating/ chloroform Or BGTC; Si/SiO ₂ /HMDS/PCBM; Al pr sp	ganic [6,6]-phenyl-C ₆₁ -butyric-acid-methyl-ester ld effect transistors: Analysis of the contact operties by combined photoemission ectroscopy and electrical measurements
165	8.70×10 ⁻² (FP doped)2.2×10 ⁻²	6.7×10 ⁶	21	Spin-coating/ chloroform BGTC; Si /SiO ₂ /BCB/PCBM; Ag Nitrogen	Solution - Processible Highly Conducting Fullerenes
	2014			Chin conting/CD	Comparative Church of the NTT D
105	0.057	2×10 ³	15.7	Spiri-coating/CB BGTC; Si/SiO ₂ /BCB; Al Nitrogen	Comparative Study of the N-Type Doping Efficiency in Solution-processed Fullerenes and Fullerene Derivatives
166	Highest: 0.12	~10 ³	10.5	Spin-coating/ chlorobenzene TGBC; Al/CYTOP/PCBM/Interlayer; Au Nitrogen	Simultaneous Enhancement of Electron Injection and Air Stability in N-Type Organic Field-Effect Transistors by Water-Soluble Polyfluorene Interlayers
	2015	•	•		

167	No DAE: 1×10 ⁻² ~4.41×10 ⁻² &DAE: 0.61×10 ⁻² ~3.80×10 ⁻²	1.8×10 ⁷ 3.5×10 ⁵ ~4.2×10 ⁵		Spin-coating/ chlorobenzene BGBC; Si/SiO ₂ /HMDS/PCBM(&DAE); Au Nitrogen	Optically switchable transistors comprising a hybrid photochromic molecule/n-type organic active layer
	2016				
168	0.04		11	Spin-coating/DCB BGBC; Si/SiO ₂ ; Au Air	Synthesis of Fullerene Derivatives for the Application to Organic Photovoltaic Cell and n-Channel Organic Thin-Film Transistors
169	BCB: 9.3×10 ⁻² b-PS(8K): 7.3×10 ⁻² b-PS(108K): 1.0×10 ⁻¹	>10 ⁵ >10 ⁵ >10 ⁵	5.1 8.5 6.6	Spin-coating/ chlorobenzene BGTC; Si /SiO ₂ /BCB or b-PS/PCBM; Au Nitrogen	Use of a cross-linkable or monolayer-forming polymeric buffer layer on PCBM-based n-channel organic field-effect transistors
	2017				
170	Pure: 0.027 With P3HT: 0.01			Spin-coating/ toluene BGTC; Si/SiO2/HMDS/PCBM&P3HT Au Nitrogen	Balanced Ambipolar Organic Field-Effect Transistors by Polymer Preaggregation
171	8×10 ⁻³			Spin-coating/ chlorobenzene TGBC; tungsten/water/CYTOP; Au Nitrogen	Water-Gated n-Type Organic Field-Effect Transistors for Complementary Integrated Circuits Operating in an Aqueous Environment

PC₇₁BM

			V _T (V)	Deposition				
Ref.	Mobility (cm ² V ⁻¹ s ⁻¹)	Ion/Ioff		Structure	Title			
				Measured in				
	2005							
172	$\mu_e = 1 \times 10^{-3}$ $\mu_h = 2 \times 10^{-5}$	~10 ⁴ ~10 ⁴		Drop cast/ chlorobenzene BGBC; Si/SiO ₂ /HMDS; /Au Vacuum	Solution processible organic transistors and circuits based on a C ₇₀ methanofullerene			
	2008		•					
143	0.1			Spin-coating/ chlorobenzene BGTC; ITO/BCB; Ca/Al Nitrogen	High mobility n-channel organic field-effect transistors based on soluble C ₆₀ and C ₇₀ fullerene derivatives			
	2009			·				
147	2.2×10 ⁻²			Spin-coating/ chloroform BGTC; Si /SiO2/PC71BM/TiOx; Al Nitrogen	Enhanced Performance of Fullerene n-Channel Field-Effect Transistors with Titanium Sub-Oxide Injection Layer			
	2012							
160	Ca/Al: 0.066 Au: 0.018	2.6×10 ⁶ 1.1×10 ⁶	8 22	Spin-coating / chloroform or DCB BGTC; Si/SiO ₂ /BCB; Ca/Al or Au Nitrogen	Evaluation of structure–property relationships of solution-processible fullerene acceptors and their n-channel field-effect transistor performance			
	2013							
173	Pure PC ₇₁ BM: 0.016			Spin-coating/CB BGTC; Si/SiO ₂ /HMDS/PC ₇₁ BM&donor Al Nitrogen	Electron and hole mobility in solution-processed small molecule-fullerene blend: Dependence on the fullerene content			
	2014							
105	0.046	1×10 ³	19.9	Spin-coating/CB BGTC; Si/SiO ₂ /BCB; Al Nitrogen	Comparative Study of the N-Type Doping Efficiency in Solution-processed Fullerenes and Fullerene Derivatives			
	2016	.6						
174	$\mu_e = 1.3 \times 10^{-3}$ $\mu_h = 2.7 \times 10^{-3}$			Spin-coating TGBC; tungsten/electrolyte/PC ₇₁ BM&polymer Au Air	An organic water-gated ambipolar transistor with a bulk heterojunction active layer for stable and tunable photodetection			
175	HMDS 7°C: 3.47×10 ⁻³ HMDS 25°C: 2.5×10 ⁻³ HMDS60°C:4.27×10 ⁻³	10 ⁴ 10 ³ 10 ⁶	22.2 10.0 14.8	Drop cast/ chlorobenzene BGBC; Si/SiO ₂ /HMDS; Au Nitrogen	$PC_{70}BM$ n-type thin film transistors: Influence of HMDS deposition temperature on the devices properties			

2. LUMO converting

The LUMO of IC₇₀MA and IC₇₀BA comes from Yongfang Li group report ¹⁷⁶ (CV was measured in a 0.1 mol/L tetrabutylammonium hexafluorophosphate (Bu_4NPF_6) in o-dichlorobenzene/acetonitrile (5:1) solution). The original data are LUMO₁($IC_{70}MA$)=-3.85 eV, LUMO₁($IC_{70}BA$)=-3.72 eV , LUMO₁($PC_{60}BM$)=-3.91 eV . In Hojeong Yu et al. report ¹⁷⁷ (CV was measured in a 0.1 mol/L tetrabutylammonium tetrafluoroborate (NBu_4BF_4) in o-dichlorobenzene solution), LUMO₂($PC_{60}BM$)=-3.85 eV. In order to compare, we choose $PC_{60}BM$ as standard to calculate as follow:

$$LUMO(IC_{70}MA) = -3.85eV \times \frac{-3.85}{-3.91} = -3.79eV$$

 $LUMO(IC_{70}BA) = -3.72eV \times \frac{-3.85}{-3.91} = -3.66eV$

3. Converting unit of solubility

Solvent	Solubility		Ref.	Solubility		Ref.
	C ₆₀			PCBM		
	mg/ml	10 ⁻³ mmol/ml		mg/ml	10 ⁻³ mmol/ml	
chloroform	0.16(r.t.)	0.22	178	28.8(25°C)	31.6	
chlorobenzene	5.7(r.t.)	7.9	180	59.5(25°C)	65.4	179
o-dichlorobenzene	24.6(r.t.)	34.2		42.1(25°C)	58.4	
	C ₇₀			PC ₇₁ BM		
o-dichlorobenzene	36.2(303K)	43.1	181	225.2(25°C)	218.6	182

Solubility of C₆₀, PCBM and C₇₀, PC₇₁BM in various solvents

The date in the left is original data that come from the corresponding references, in order to give an intuitive comprehension and compare, the unit is converted from mg/ml to 10⁻³mmol/ml. The more solubility can be see references: ¹⁸³⁻¹⁸⁵.

- 1. J. Paloheimo, H. Isotalo, J. Kastner and H. Kuzmany, *Synthetic Metals*, 1993, **56**, 3185-3190.
- 2. J. Kastner, J. Paloheimo and H. Kuzmany, Berlin, Heidelberg, 1993, **113**,512-515.
- 3. H. Katsunori, F. Shigeo, F. Shizuo and F. Shigeo, *Japanese Journal of Applied Physics*, 1993, **32**, L1070.
- 4. R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard and R. M. Fleming, *Applied Physics Letters*, 1995, 67, 121.
- 5. A. Dodabalapur, H. E. Katz, L. Torsi and R. C. Haddon, *Science*, 1995, **269**, 1560.
- 6. A. Dodabalapur, H. E. Katz, L. Torsi and R. C. Haddon, *Applied Physics Letters*, 1996, **68**, 1108-1110.
- Keiichi Kaneto, Kazuya Yamanaka, Kouichi Rikitake, Takahiro Akiyama and Wataru Takashima, Japanese Journal of Applied Physics, 1996, 35, 1802.
- 8. C. P. Jarrett, K. Pichler, R. Newbould and R. H. Friend, *Synthetic Metals*, 1996, **77**, 35-38.
- K. Horiuchi, K. Nakada, S. Uchino, S. Hashii, A. Hashimoto, N. Aoki, Y. Ochiai and M. Shimizu, *Applied Physics Letters*, 2002, 81, 1911-1912.
- 10. S. Kobayashi, T. Takenobu, S. Mori, A. Fujiwara and Y. Iwasa, *Science and Technology of Advanced Materials*, 2003, **4**, 371-375.
- 11. S. Kobayashi, T. Takenobu, S. Mori, A. Fujiwara and Y. Iwasa, Applied Physics Letters, 2003, 82, 4581.
- 12. T. Shimada, T. Suetsugu, T. Miyadera, Y. Yamamoto, A. Koma, K. Saiki and K. Kudo, *Applied Physics Letters*, 2004, **84**, 2439-2441.
- 13. K. Tanigaki, R. Kumashiro and H. Ohashi, *Chemical Physics Letters*, 2004, 400, 235-238.
- M. Chikamatsu, S. Nagamatsu, T. Taima, Y. Yoshida, N. Sakai, H. Yokokawa, K. Saito and K. Yase, *Applied Physics Letters*, 2004, 85, 2396-2398.
- 15. E. Kuwahara, Y. Kubozono, T. Hosokawa, T. Nagano, K. Masunari and A. Fujiwara, *Applied Physics Letters*, 2004, **85**, 4765-4767.
- 16. H. Ohashi, K. Tanigaki, R. Kumashiro and S. Sugihara, *Applied Physics Letters*, 2004, **84**, 520-522.
- 17. T. Nishikawa, S.-I. Kobayashi, T. Nakanowatari, T. Mitani, T. Shimoda, Y. Kubozono, G. Yamamoto, H. Ishii, M. Niwano and Y. Iwasa, *Journal of Applied Physics*, 2005, **97**, 104509.
- 18. S. J. Kang, Y. Yi, C. Y. Kim, K. Cho, J. H. Seo, M. Noh, K. Jeong, K.-H. Yoo and C. N. Whang, *Applied Physics Letters*, 2005, **87**, 233502.
- 19. E. Kuwahara, H. Kusai, T. Nagano, T. Takayanagi and Y. Kubozono, *Chemical Physics Letters*, 2005, **413**, 379-383.
- 20. Y. Kubozono, T. Nagano, Y. Haruyama, E. Kuwahara, T. Takayanagi, K. Ochi and A. Fujiwara, Applied Physics Letters, 2005, 87,

143506.

- 21. Y. Hayashi, H. Kanamori, I. Yamada, A. Takasu, S. Takagi and K. Kaneko, *Applied Physics Letters*, 2005, **86**, 052104.
- 22. J. N. Haddock, X. Zhang, B. Domercq and B. Kippelen, *Organic Electronics*, 2005, **6**, 182-187.
- 23. T. B. Singh, N. Marjanović, G. J. Matt, S. Günes, N. S. Sariciftci, A. Montaigne Ramil, A. Andreev, H. Sitter, R. Schwödiauer and S. Bauer, *Organic Electronics*, 2005, **6**, 105-110.
- 24. A. Tapponnier, I. Biaggio and P. Günter, *Applied Physics Letters*, 2005, **86**, 112114.
- 25. F. Li, M. Pfeiffer, A. Werner, K. Harada, K. Leo, N. Hayashi, K. Seki, X. Liu and X.-D. Dang, *Journal of Applied Physics*, 2006, **100**, 023716.
- 26. T. Miyadera, M. Nakayama and K. Saiki, *Applied Physics Letters*, 2006, **89**, 172117.
- 27. S. Wang, K. Kanai, Y. Ouchi and K. Seki, *Organic Electronics*, 2006, **7**, 457-464.
- 28. K. Ogawa, T. Kato, A. Ikegami, H. Tsuji, N. Aoki, Y. Ochiai and J. P. Bird, *Applied Physics Letters*, 2006, **88**, 112109.
- 29. T. D. Anthopoulos, B. Singh, N. Marjanovic, N. S. Sariciftci, A. Montaigne Ramil, H. Sitter, M. Cölle and D. M. de Leeuw, *Applied Physics Letters*, 2006, **89**, 213504.
- 30. K. Itaka, M. Yamashiro, J. Yamaguchi, M. Haemori, S. Yaginuma, Y. Matsumoto, M. Kondo and H. Koinuma, *Advanced materials*, 2006, **18**, 1713-1716.
- 31. A. M. Ramil, T. B. Singh, N. T. Haber, N. Marjanović, S. Günes, A. Andreev, G. J. Matt, R. Resel, H. Sitter and S. Sariciftci, Journal of Crystal Growth, 2006, **288**, 123-127.
- 32. Y. Matsuoka, K. Uno, N. Takahashi, A. Maeda, N. Inami, E. Shikoh, Y. Yamamoto, H. Hori and A. Fujiwara, *Applied Physics Letters*, 2006, **89**, 173510.
- 33. T. P. I. Saragi and J. Salbeck, *Applied Physics Letters*, 2006, **89**, 253516.
- 34. K. Ochi, T. Nagano, T. Ohta, R. Nouchi, Y. Kubozono, Y. Matsuoka, E. Shikoh and A. Fujiwara, *Applied Physics Letters*, 2006, **89**, 083511.
- 35. A. L. Briseno, C. Reese, F. Wudl, M. M. Ling, M. E. Roberts, R. J. Tseng, S. Liu, S. C. B. Mannsfeld, Y. Yang and Z. Bao, *Nature*, 2006, **444**, 913-917.
- 36. G. J. Matt, T. B. Singh, N. S. Sariciftci, A. M. Ramil and H. Sitter, *Applied Physics Letters*, 2006, **88**, 263516.
- 37. A. Opitz, M. Bronner and W. Brütting, *Journal of Applied Physics*, 2007, **101**, 063709.
- 38. A. Dzwilewski, T. Wågberg and L. Edman, *Physical Review B*, 2007, **75**, 075203.
- T. Birendra Singh, H. Yang, B. Plochberger, L. Yang, H. Sitter, H. Neugebauer and N. S. Sariciftci, *physica status solidi* (b), 2007, 244, 3845-3848.
- 40. T. B. Singh, N. S. Sariciftci, H. Yang, L. Yang, B. Plochberger and H. Sitter, *Applied Physics Letters*, 2007, **90**, 213512.
- 41. T. Matsushima, M. Yahiro and C. Adachi, *Applied Physics Letters*, 2007, **91**, 103505.
- 42. J. Puigdollers, C. Voz, S. Cheylan, A. Orpella, M. Vetter and R. Alcubilla, *Thin Solid Films*, 2007, **515**, 7667-7670.
- 43. J. H. Na, M. Kitamura and Y. Arakawa, *Applied Physics Letters*, 2007, **91**, 193501.
- 44. X. H. Zhang, B. Domercq and B. Kippelen, *Applied Physics Letters*, 2007, **91**, 092114.
- 45. M. Kitamura, Y. Kuzumoto, M. Kamura, S. Aomori and Y. Arakawa, *Applied Physics Letters*, 2007, **91**, 183514.
- 46. J. Zhou, F. Zhang, L. Lan, S. Wen and J. Peng, *Applied Physics Letters*, 2007, **91**, 253507.
- 47. M. Kitamura and Y. Arakawa, *Applied Physics Letters*, 2007, **91**, 053505.
- 48. Takayuki Nagano, Michiko Tsutsui, Ryo Nouchi, Naoko Kawasaki, Yohei Ohta, Yoshihiro Kubozono, Nobuya Takahashi and A. Fujiwara, *Journal of Physical Chemistry C*, 2007, **111**, 7211-7217.
- 49. N. Takahashi, A. Maeda, K. Uno, E. Shikoh, Y. Yamamoto, H. Hori, Y. Kubozono and A. Fujiwara, *Applied Physics Letters*, 2007, **90**, 083503.
- 50. M. Bronner, A. Opitz and W. Brütting, *Physica Status Solidi*, 2008, **205**, 549-563.
- 51. O. Andreas, K. Michael, B. Markus, W. Julia and B. Wolfgang, *New Journal of Physics*, 2008, **10**, 065006.
- 52. M. Kitamura, S. Aomori, J. H. Na and Y. Arakawa, *Applied Physics Letters*, 2008, **93**, 033313.
- 53. Y. Kubozono, S. Haas, W. L. Kalb, P. Joris, F. Meng, A. Fujiwara and B. Batlogg, *Applied Physics Letters*, 2008, **93**, 033316.
- 54. X.-H. Zhang and B. Kippelen, *Journal of Applied Physics*, 2008, **104**, 104504.
- 55. X. H. Zhang and B. Kippelen, *Applied Physics Letters*, 2008, **93**, 133305.

- 56. O. Acton, G. Ting, H. Ma and A. K.-Y. Jen, *Applied Physics Letters*, 2008, **93**, 083302.
- 57. M. Kitamura, Y. Kuzumoto, M. Kamura, S. Aomori, J. H. Na and Y. Arakawa, physica status solidi (c), 2008, 5, 3181-3183.
- 58. A. Konishi, E. Shikoh, Y. Kubozono and A. Fujiwara, *Applied Physics Letters*, 2008, **92**, 173302.
- 59. Y. Ohta, Y. Kubozono and A. Fujiwara, *Applied Physics Letters*, 2008, **92**, 173306.
- 60. M. Irimia-Vladu, N. Marjanovic, A. Vlad, A. M. Ramil, G. Hernandez-Sosa, R. Schwoödiauer, S. Bauer and N. S. Sariciftci, *Advanced Materials*, 2008, **20**, 3887-3892.
- 61. H. Yan, T. Kagata and H. Okuzaki, *Applied Physics Letters*, 2009, **94**, 023305.
- 62. M. Kitamura and Y. Arakawa, *Applied Physics Letters*, 2009, **95**, 023503.
- Y. Ito, A. A. Virkar, S. Mannsfeld, J. H. Oh, M. Toney, J. Locklin and Z. Bao, *Journal of the American Chemical Society*, 2009, 131, 9396-9404.
- 64. M. Ullah, D. M. Taylor, R. Schwödiauer, H. Sitter, S. Bauer, N. S. Sariciftci and T. B. Singh, *Journal of Applied Physics*, 2009, **106**, 114505.
- 65. C. F. Sung, D. Kekuda, L. F. Chu, Y. Z. Lee, F. C. Chen, M. C. Wu and C. W. Chu, Advanced materials, 2009, **21**, 4845-4849.
- 66. Y. Ochiai, K. Ogawa, N. Aoki and J. P. Bird, *Journal of Physics: Conference Series*, 2009, **159**, 012004.
- 67. M. Irimia-Vladu, N. Marjanovic, M. Bodea, G. Hernandez-Sosa, A. M. Ramil, R. Schwödiauer, S. Bauer, N. S. Sariciftci and F. Nüesch, *Organic Electronics*, 2009, **10**, 408-415.
- 68. M. Kitamura, Y. Kuzumoto, S. Aomori, M. Kamura, J. H. Na and Y. Arakawa, *Applied Physics Letters*, 2009, **94**, 83310.
- 69. M. Ullah, I. I. Fishchuk, A. Kadashchuk, P. Stadler, A. Pivrikas, C. Simbrunner, V. N. Poroshin, N. S. Sariciftci and H. Sitter, *Applied Physics Letters*, 2010, **96**, 213306.
- 70. D. Tatsuya, K. Kyouhei, C. Yasuto, T. Hajime, U. Misaki, C. Shih-Ren, A. Nobuyuki, B. Jonathan Paul and O. Yuichi, *Japanese Journal of Applied Physics*, 2010, **49**, 04DN12.
- 71. M. Irimia-Vladu, P. A. Troshin, M. Reisinger, G. Schwabegger, M. Ullah, R. Schwoediauer, A. Mumyatov, M. Bodea, J. W. Fergus and V. F. Razumov, *Organic Electronics*, 2010, **11**, 1974-1990.
- 72. P. Cosseddu and A. Bonfiglio, *Applied Physics Letters*, 2010, **97**, 203305.
- 73. Z. Jianlin and N. Qiaoli, *Chinese Physics B*, 2010, **19**, 77305.
- 74. M. Ullah, A. Pivrikas, Fishchuk, II, A. Kadashchuk, P. Stadler, C. Simbrunner, N. S. Sariciftci and H. Sitter, *Synth Met*, 2011, **161**, 1987-1990.
- 75. H. Zheng, X. Cheng, H. Tian and G. Zhao, *Journal of Semiconductors*, 2011, **32**, 094005.
- 76. G. Schwabegger, M. Ullah, M. Irimia-Vladu, M. Baumgartner, Y. Kanbur, R. Ahmed, P. Stadler, S. Bauer, N. S. Sariciftci and H. Sitter, Synthetic Metals, 2011, 161, 2058-2062.
- 77. C. Xinyang, Y. Junsheng, Z. Jianlin, Y. Xinge and J. Yadong, Japanese Journal of Applied Physics, 2011, 50, 124203.
- 78. K. Woogun, K. Masatoshi and A. Yasuhiko, *Applied Physics Express*, 2011, **4**, 121602.
- 79. K. Takuji, O. Chikako, S. Masato and A. Chihaya, *Japanese Journal of Applied Physics*, 2011, **50**, 050202.
- 80. P. Wei, T. Menke, B. D. Naab, K. Leo, M. Riede and Z. Bao, *Journal of the American Chemical Society*, 2012, **134**, 3999-4002.
- 81. Z. Jian-Lin, Y. Jun-Sheng, Y. Xin-Ge and C. Xin-Yang, *Chinese Physics B*, 2012, **21**, 027305.
- 82. H. Kleemann, A. A. Zakhidov, M. Anderson, T. Menke, K. Leo and B. Lüssem, Organic Electronics, 2012, 13, 506-513.
- 83. Y. Chung, O. Johnson, M. Deal, Y. Nishi, B. Murmann and Z. Bao, *Applied Physics Letters*, 2012, **101**, 063304.
- 84. T. Wakahara, P. D'Angelo, K. I. Miyazawa, Y. Nemoto, O. Ito, N. Tanigaki, D. D. C. Bradley and T. D. Anthopoulos, *Journal of the American Chemical Society*, 2012, **134**, 7204.
- 85. H. Li, B. C. Tee, J. J. Cha, Y. Cui, J. W. Chung, S. Y. Lee and Z. Bao, *Journal of the American Chemical Society*, 2012, **134**, 2760-2765.
- 86. C. Larsen, H. R. Barzegar, F. Nitze, T. Wagberg and L. Edman, *Nanotechnology*, 2012, **23**, 344015.
- 87. T. T. Dao, T. Matsushima and H. Murata, *Organic Electronics*, 2012, **13**, 2709-2715.
- 88. S. Olthof, S. Singh, S. K. Mohapatra, S. Barlow, S. R. Marder, B. Kippelen and A. Kahn, *Applied Physics Letters*, 2012, **101**, 253303.
- 89. K. Woogun, K. Masatoshi, I. Tetsuji and A. Yasuhiko, *Japanese Journal of Applied Physics*, 2012, **51**, 11PD06.
- 90. K. Woogun, K. Masatoshi, K. Masakazu, A. Shigeru and A. Yasuhiko, *Japanese Journal of Applied Physics*, 2012, **51**, 02BK10.

- A. Nigam, G. Schwabegger, M. Ullah, R. Ahmed, I. I. Fishchuk, A. Kadashchuk, C. Simbrunner, H. Sitter, M. Premaratne and V.
 R. Rao, *Applied Physics Letters*, 2012, **101**, 083305.
- 92. A. Petritz, A. Wolfberger, A. Fian, M. Irimia-Vladu, A. Haase, H. Gold, T. Rothländer, T. Griesser and B. Stadlober, *Applied Physics Letters*, 2013, **103**, 153303.
- 93. S. J. Noever, S. Fischer and B. Nickel, *Advanced materials*, 2013, **25**, 2147-2151.
- 94. Q. Li, X. Yu, W. Shi and J. Yu, Synthetic Metals, 2013, 163, 57-60.
- 95. X. Liang, X. Cheng, B. Du, X. Bai and J. Fan, *Journal of Semiconductors*, 2013, **34**, 084002.
- 96. K. Ahn, J. Beom Kim, H. Park, H. Kim, M. Hyung Lee, B. Joon Kim, J. Ho Cho, M. Sung Kang and D. Ryeol Lee, *Applied Physics Letters*, 2013, **102**, 043306.
- 97. J. Zhang, J. Tan, Z. Ma, W. Xu, G. Zhao, H. Geng, C. Di, W. Hu, Z. Shuai, K. Singh and D. Zhu, *Journal of the American Chemical Society*, 2013, **135**, 558-561.
- 98. W. Kang, M. Kitamura and Y. Arakawa, Organic Electronics, 2013, 14, 644-648.
- 99. D. Chen, B. Yao, G. Fan, W. Lv, P. Gao, M. Zhou and Y. Peng, *Applied Physics Letters*, 2013, **102**, 163303.
- 100. L. Qian Khor and K. Yew Cheong, *ECS Journal of Solid State Science and Technology*, 2013, **2**, P440-P444.
- S. Singh, S. K. Mohapatra, A. Sharma, C. Fuentes-Hernandez, S. Barlow, S. R. Marder and B. Kippelen, *Applied Physics Letters*, 2013, **102**, 153303.
- 102. H. R. Barzegar, C. Larsen, L. Edman and T. Wågberg, *Particle & Particle Systems Characterization*, 2013, **30**, 715-720.
- 103. L.-S. Tsai, J.-C. Hwang, C.-Y. Lee, Y.-T. Lin, C.-L. Tsai, T.-H. Chang, Y.-L. Chueh and H.-F. Meng, *Applied Physics Letters*, 2013, 103, 233304.
- 104. R. Ahmed, C. Simbrunner, G. Schwabegger, M. A. Baig and H. Sitter, *Synthetic Metals*, 2014, **188**, 136-139.
- 105. S. Rossbauer, C. Müller and T. D. Anthopoulos, *Advanced Functional Materials*, 2014, **24**, 7116-7124.
- 106. R. Ahmed, A. Kadashchuk, C. Simbrunner, G. Schwabegger, M. A. Baig and H. Sitter, ACS applied materials & interfaces, 2014, 6, 15148-15153.
- 107. Y. Li, S. Chen, Q. Liu, Y. Li, Y. Shi, X. Wang, J. Ma and Z. Hu, *The Journal of Physical Chemistry C*, 2014, **118**, 14218-14226.
- 108. J.-P. Yang, Q.-J. Sun, K. Yonezawa, A. Hinderhofer, A. Gerlach, K. Broch, F. Bussolotti, X. Gao, Y. Li, J. Tang, F. Schreiber, N. Ueno, S.-D. Wang and S. Kera, *Organic Electronics*, 2014, **15**, 2749-2755.
- 109. I. I. Fishchuk, A. Kadashchuk, S. V. Novikov, M. Ullah, J. Genoe, N. S. Sariciftci, H. Sitter and H. Bässler, *Molecular Crystals & Liquid Crystals*, 2014, **589**, 18-28.
- 110. H. Li, C. Fan, M. Vosgueritchian, B. C. K. Tee and H. Chen, *Journal of Materials Chemistry C*, 2014, **2**, 3617-3624.
- 111. D. Lili, L. Xiao, W. Zhanwei, Z. Jianping, S. Lei, L. Wenli, L. Yao, Z. Feiyu, Z. Junkang, R. Qiang, H. Fobao, X. Hongquan and P. Yingquan, *Journal of Physics D: Applied Physics*, 2015, **48**, 405105.
- 112. K. Y. Wu, T. Y. Wu, S. T. Chang, H. Chain Shu and C. L. Wang, *Advanced materials*, 2015, **27**, 187-194.
- L. Yao, L. Wenli, L. Xiao, S. Lei, Z. Maoqing, Z. Jianping, Z. Feiyu, Z. Junkang and P. Yingquan, *EPL (Europhysics Letters)*, 2015, 110, 17006.
- 114. Y. J. Jeong, D. Yun, J. Jang, S. Park, T. K. An, L. H. Kim, S. H. Kim and C. E. Park, *Physical Chemistry Chemical Physics*, 2015, **17**, 6635-6643.
- 115. L. Sun, J. Zhang, F. Zhao, X. Luo, W. Lv, Y. li, Q. Ren, Z. Wen, Y. Peng and X. Liu, *Nanotechnology*, 2015, 26, 185501.
- 116. M. Robin, M. Harnois, Y. Molard and E. Jacques, *Organic Electronics*, 2016, **39**, 214-221.
- 117. A. Nawaz, C. De Col, I. A. Hümmelgen, A. Nawaz, C. De Col and I. A. Hümmelgen, *Mat Res*, 2016, **19**, 1201.
- 118. Q. Li, J. Wu, R. Wu, Y. Liu, H. Chen, F. Huang and H. Li, Science China Chemistry, 2017, 60, 490-496.
- 119. F. Huang, Y. Li, H. Xia, J. Zhang, K. Xu, Y. Peng and G. Liu, *Carbon*, 2017, **118**, 666-674.
- 120. R. Haddon, *Journal of the American Chemical Society*, 1996, **118**, 3041-3042.
- 121. C. Waldauf, P. Schilinsky, M. Perisutti, J. Hauch and C. J. Brabec, *Advanced materials*, 2003, **15**, 2084-2088.
- 122. T. D. Anthopoulos, C. Tanase, S. Setayesh, E. J. Meijer, J. C. Hummelen, P. W. M. Blom and D. M. De Leeuw, Advanced materials, 2004, 16, 2174-2179.
- 123. T. D. Anthopoulos, D. M. d. Leeuw, E. Cantatore, S. Setayesh, E. J. Meijer, C. Tanase, J. C. Hummelen and P. W. M. Blom, Applied Physics Letters, 2004, **85**, 4205-4207.

- 124. T. B. Singh, N. Marjanovic, G. J. Matt, N. S. Sariciftci, R. Schwodiauer and S. Bauer, *Applied Physics Letters*, 2004, **85**, 5409-5411.
- 125. T. D. Anthopoulos, D. M. De Leeuw, E. Cantatore, S. Setayesh, E. J. Meijer, C. Tanase, J. C. Hummelen and P. W. M. Blom, *Applied Physics Letters*, 2004, **85**, 4205-4207.
- 126. T.-W. Lee, Y. Byun, B.-W. Koo, I.-N. Kang, Y.-Y. Lyu, C. H. Lee, L. Pu and S. Y. Lee, *Advanced materials*, 2005, **17**, 2180-2183.
- 127. T. B. Singh, S. Günes, N. Marjanović, N. S. Sariciftci and R. Menon, *Journal of Applied Physics*, 2005, **97**, 114508.
- 128. T. B. Singh, N. Marjanovic, P. Stadler, M. Auinger, G. J. Matt, S. Gunes, N. S. Sariciftci, R. Schwodiauer and S. Bauer, *Journal of Applied Physics*, 2005, **97**, 83714.
- 129. J. Nakamura, K. Murata and K. Takahashi, *Applied Physics Letters*, 2005, **87**, 3693.
- 130. E. Von Hauff, V. Dyakonov and J. Parisi, *Solar Energy Materials and Solar Cells*, 2005, **87**, 149-156.
- 131. S. Cho, J. Yuen, J. Y. Kim, K. Lee and A. J. Heeger, *Applied Physics Letters*, 2006, **89**, 153505.
- 132. E. von Hauff, J. Parisi and V. Dyakonov, *Thin Solid Films*, 2006, **511-512**, 506-511.
- 133. E. v. Hauff, J. Parisi and V. Dyakonov, *Journal of Applied Physics*, 2006, **100**, 073713.
- 134. E. v. Hauff, J. Parisi and V. Dyakonov, *Journal of Applied Physics*, 2006, **100**, 043702.
- 135. N. Marjanović, T. B. Singh, G. Dennler, S. Günes, H. Neugebauer, N. S. Sariciftci, R. Schwödiauer and S. Bauer, *Organic Electronics*, 2006, **7**, 188-194.
- 136. M. Shibao, T. Morita, W. Takashima and K. Kaneto, *Japanese Journal of Applied Physics*, 2007, 46, L123-L125.
- 137. K. Kaneto, M. Yano, M. Shibao, T. Morita and W. Takashima, *Japanese Journal of Applied Physics*, 2007, **46**, 1736-1738.
- 138. T. D. Anthopoulos, *Applied Physics Letters*, 2007, **91**, 113513.
- 139. M. Morana, P. Koers, C. Waldauf, M. Koppe, D. Muehlbacher, P. Denk, M. Scharber, D. Waller and C. Brabec, *Advanced Functional Materials*, 2007, **17**, 3274-3283.
- 140. W. Takashima, T. Murasaki, S. Nagamatsu, T. Morita and K. Kaneto, *Applied Physics Letters*, 2007, **91**, 071905.
- 141. S. Tiwari, E. Namdas, V. R. Rao, D. Fichou and S. Mhaisalkar, *Electron Device Letters, IEEE*, 2007, **28**, 880-883.
- 142. M. Chikamatsu, A. Itakura, Y. Yoshida, R. Azumi and K. Yase, *Chemistry of Materials*, 2008, **20**, 7365-7367.
- 143. P. H. Wöbkenberg, D. D. C. Bradley, D. Kronholm, J. C. Hummelen, D. M. de Leeuw, M. Cölle and T. D. Anthopoulos, *Synthetic Metals*, 2008, **158**, 468-472.
- 144. C.-W. Chu, C.-F. Sung, Y.-Z. Lee and K. Cheng, Organic Electronics, 2008, 9, 262-266.
- 145. M. Shibao, T. Morita, W. Takashima and K. Kaneto, *Thin Solid Films*, 2008, **516**, 2607-2610.
- 146. S. Cho, J. Yuen, J. Y. Kim, K. Lee, A. J. Heeger and S. Lee, *Applied Physics Letters*, 2008, **92**, 063505.
- 147. S. Cho, J. H. Seo, K. Lee and A. J. Heeger, *Advanced Functional Materials*, 2009, **19**, 1459-1464.
- 148. C. Yang, S. Cho, A. J. Heeger and F. Wudl, *Angewandte Chemie*, 2009, **48**, 1592-1595.
- 149. S. P. Tiwari, X. H. Zhang, W. J. P. Jr and B. Kippelen, *Applied Physics Letters*, 2009, **95**, 313.
- 150. J. M. Ball, P. H. Wöbkenberg, F. Colléaux, M. Heeney, J. E. Anthony, I. McCulloch, D. D. C. Bradley and T. D. Anthopoulos, *Applied Physics Letters*, 2009, **95**, 103310.
- 151. M. Rao and K. S. Narayan, *Applied Physics Letters*, 2009, **95**, 183306.
- 152. S. P. Tiwari, X. H. Zhang, W. J. Potscavage and B. Kippelen, *Journal of Applied Physics*, 2009, **106**, 253.
- 153. H. Kong, J. S. Moon, N. S. Cho, I. H. Jung, M.-J. Park, J.-H. Park, S. Cho and H.-K. Shim, *Applied Physics Letters*, 2009, **95**, 173301.
- 154. M. Takeomi, S. Vipul, O. Shinya, N. Shuichi, T. Wataru, H. Shuzi and K. Keiichi, *Japanese Journal of Applied Physics*, 2010, **49**, 041601.
- 155. Y. Horii, K. Sakaguchi, M. Chikamatsu, R. Azumi, K. Yase, M. Kitagawa and H. Konishi, *Applied Physics Express*, 2010, **3**, 101601.
- 156. P. Wei, J. H. Oh, G. Dong and Z. Bao, *Journal of the American Chemical Society*, 2010, **132**, 8852-8853.
- 157. J. M. Ball, R. K. M. Bouwer, F. B. Kooistra, J. M. Frost, Y. Qi, E. B. Domingo, J. Smith, D. M. de Leeuw, J. C. Hummelen, J. Nelson, A. Kahn, N. Stingelin, D. D. C. Bradley and T. D. Anthopoulos, *Journal of Applied Physics*, 2011, **110**, 014506.
- 158. S. Fall, L. Biniek, N. Leclerc, P. Lévêque and T. Heiser, *Applied Physics Letters*, 2012, **101**, 123301.
- 159. S. Nam, J. Jang, H. Cha, J. Hwang, T. K. An, S. Park and C. E. Park, Journal of Materials Chemistry, 2012, 22, 5543.

- 160. C.-Z. Li, C.-C. Chueh, H.-L. Yip, J. Zou, W.-C. Chen and A. K. Y. Jen, *Journal of Materials Chemistry*, 2012, **22**, 14976.
- 161. F. C. Chen, T. H. Tsai and S. C. Chien, *Organic Electronics*, 2012, **13**, 599-603.
- 162. S. Kola, N. J. Tremblay, M. L. Yeh, H. E. Katz, S. B. Kirschner and D. H. Reich, Acs Macro Letters, 2012, 2012, 136-140.
- 163. V. Gernigon, P. Lévêque, F. Richard, N. Leclerc, C. Brochon, C. H. Braun, S. Ludwigs, D. V. Anokhin, D. A. Ivanov, G. Hadziioannou and T. Heiser, *Macromolecules*, 2013, **46**, 8824-8831.
- 164. S. Scheinert, M. Grobosch, J. Sprogies, I. Hörselmann, M. Knupfer and G. Paasch, *Journal of Applied Physics*, 2013, **113**, 174504.
- 165. C. Z. Li, C. C. Chueh, H. L. Yip, F. Ding, X. Li and A. K. Jen, *Advanced materials*, 2013, **25**, 2457-2461.
- 166. J. Kim, D. Khim, R. Kang, S. H. Lee, K. J. Baeg, M. Kang, Y. Y. Noh and D. Y. Kim, ACS applied materials & interfaces, 2014, 6, 8108.
- 167. K. Börjesson, M. Herder, L. Grubert, D. Duong, A. Salleo, S. Hecht, E. Orgiu and P. Samori, *J.mater.chem.c*, 2015, **3**, 4156-4161.
- 168. J.-M. Yun, D.-Y. Kim and Y.-Y. Noh, Science of Advanced Materials, 2016, 8, 450-457.
- 169. K. Kim, H. J. Jeong and F. S. Kim, *Polymer Bulletin*, 2016, **73**, 2493-2500.
- L. Janasz, A. Luczak, T. Marszalek, B. G. R. Dupont, J. Jung, J. Ulanski and W. Pisula, ACS applied materials & interfaces, 2017, 9, 20696-20703.
- 171. R. Porrazzo, A. Luzio, S. Bellani, G. E. Bonacchini, Y. Y. Noh, Y. H. Kim, G. Lanzani, M. R. Antognazza and M. Caironi, Acs Omega, 2017, **2**, 1-10.
- 172. T. D. Anthopoulos, D. M. de Leeuw, E. Cantatore, P. van 't Hof, J. Alma and J. C. Hummelen, *Journal of Applied Physics*, 2005, **98**, 054503.
- 173. A. K. K. Kyaw, D. H. Wang, H.-R. Tseng, J. Zhang, G. C. Bazan and A. J. Heeger, *Applied Physics Letters*, 2013, **102**, 163308.
- 174. H. Xu, Q. Zhu, T. Wu, W. Chen, G. Zhou, J. Li, H. Zhang and N. Zhao, *Applied Physics Letters*, 2016, **109**, 213301.
- 175. M. R. Fiorillo, C. Diletto, P. Tassini, M. G. Maglione, E. Santoro, F. Villani, R. Liguori, P. Maddalena, A. Rubino and C. Minarini, *Materials Today Proceedings*, 2016, **3**, 720-726.
- 176. Y. He, G. Zhao, B. Peng and Y. Li, *Advanced Functional Materials*, 2010, **20**, 3383-3389.
- 177. H. Yu, H. H. Cho, C. H. Cho, K. H. Kim, D. Y. Kim, B. J. Kim and J. H. Oh, ACS applied materials & interfaces, 2013, 5, 4865-4871.
- 178. R. S. Ruoff, D. S. Tse, R. Malhotra and D. C. Lorents, *Journal of Physical Chemistry*, 1993, **97**, 3379-3383.
- 179. F. Machui, S. Langner, X. Zhu, S. Abbott and C. J. Brabec, *Solar Energy Materials & Solar Cells*, 2012, **100**, 138-146.
- 180. W. A. Scrivens and J. M. Tour, J. Chem. Soc., Chem. Commun., 1993,0, 1207-1209.
- 181. N. Sivaraman, R. Dhamodaran, I. Kaliappan, T. G. Srinivasan, P. R. P. V. Rao and C. K. C. Mathews, *Fullerene Science & Technology*, 1994, **2**, 233-246.
- 182. X. Guo, M. Zhang, W. Ma, S. Zhang, J. Hou and Y. Li, *Rsc Advances*, 2016, **6**, 51924-51931.
- 183. M. V. Korobov and A. L. Smith, *Fullerenes: Chemistry, physics, and technology*, 2000, 53-90.
- 184. V. N. Bezmel'nitsyn, A. V. Eletskii and M. Okun', *Physics-Uspekhi*, 1998, **41**, 1091-1114.
- 185. M. T. Beck and G. Mándi, *Fullerenes, Nanotubes, and Carbon Nanostructures*, 1997, **5**, 291-310.