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A. Synthetic Schemes: 

Scheme S1. Synthesis of compound 6. [S1]
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Scheme S2. Synthesis of Monomer M-O-3. [S2]
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Scheme S3. Synthesis of Monomer M-C-3. 
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B. Supporting Figures and Tables:

Table S1. GPC data of P-O-3-Boc and P-C-3-Boc.

Mn (kDa) Mw (kDa) Mw/Mn (PDI)

P-O-3-Boc 21.6 40.9 1.89

P-C-3-Boc 12 26 2.17

Table S2. Ksv data of P-O-3 and P-C-3 to different quenchers.

KSV (M−1)

Quencher PPi ATP ADP AMP Pi

P-O-3 2.3x105 1.1x105 4.0x104 2.6x103 8.5x103

P-C-3 1.5x105 8.3x104 1.8x104 1.1x103 3x103

Figure S1. Absorption spectra of P-O-3 (left) and P-C-3 (right) in buffered 
solutions (pH = 6.5) with increasing the concentrations of PPi. (polymer 
concentration = 10 μM in both cases).
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Figure S2. Fluorescence spectra of 10 μM (left) and 1 μM (right) of P-C-3 with 
increasing the concentration of PPi.

Figure S3. Fluorescence quenching spectra of P-C-3 in 10 mM of sodium 
chloride solution (left) and 10 mM of MES pH=6.5 buffered solutions (right) 
with increasing concentration of PPi. (polymer solutions’ concentration = 10 
μM in both cases).
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Figure S4. Fluorescence spectra of P-O-3 in buffered solutions (pH = 6.5) 
with increasing quenchers’ concentrations: a) ATP; B) ADP; c) Pi; d) AMP. 
(polymer concentration = 10 μM in all cases).
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Figure S5. Absorption spectra of P-C-3 in buffered solutions (pH = 6.5) with 
increasing quenchers’ concentrations: (polymer concentration = 10 μM in both 
cases).
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Figure S6. Pictures showing the polymer fluorescence under UV light before 
(left) and after (right) adding a quencher. a）P-C-3; Quencher: PPi. b) P-O-3; 
Quencher: PPi. c) P-C-3; Quencher: ATP. The polymer concentration is 10 
μM in buffer (pH=6.5), and the quencher concentration is 12 μM.
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Figure S7. DLS results for polymer P-C-3 (a) and P-O-3 (b) and aggregates 
formed from polymer solution (10 uM) with PPi or ATP concentration of 10 μM.
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Calculation of Analytical Limit of Detection (LOD) for PPi Sensing by P-
C-3:

Method: The intensity (Io) of 5 freshly prepared 10 uM of P-C-3 solution was 

recorded. Then the standard deviation (σ) of these five measurements was 

calculated as shown in the table below. 

Measurement 1 2 3 4 5 Mean

(I0mean)

Intensity (I0) 643212.1 611910.5 621364.4 613003.2 631325.4 624163.1

Standard 

deviation (σ) 

13197

Limit of Detection of P-C-3 to PPi by Stern-Volmer Measurement: 

The analytical limit of detection (LOD) is defined as the point where the 

measurement signal exceeds three times the error in the measurement, e.g., 

3 x σ.

In the experiments to detect pyrophosphate, we used Stern-Volmer equation, 

I0/I - 1 = KSV [Q]

where (I0/I - 1) is measured signal intensity ratio. In the quenching experiment, 

I0 is the intensity at the beginning, and I is the intensity after addition of 

amount of analyte (quencher).

I0/I -1 = (I0 - I)/I = ΔI/I where ΔI is the difference in the signal intensity in the 

presence (I) and absence of analyte (I0). 

For LOD calculation, the standard deviation for the blank samples (σ) 

represents the change in signal intensity in absence of analyte, and the 

corresponding change in intensity ratio is given by σ/I0mean. 

σ/I0mean = 13197 / 624163 = 0.021;

This value represents the fluctuations in the signal intensity ratio in absence of 

analyte concentration. Therefore, limit of detection is given approximately by 

3(σ/I0mean) = 3 × 0.021= 0.063.
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In the Stern-Vomer plot of PPi quenching of P-C-3 (Figure S8), 0.063 on the 

y-axis corresponds to the 0.65 μM concentration of PPi. Therefore, the 

estimated LOD of P-C-3 sensor for PPi is 0.65 μM. 
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Equation y = a + b*x
Adj. R-Square 0.98815

Value Standard Error
G2 Intercept -0.00456 0.0095
G2 Slope 0.10292 0.00563
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Figure S8: Stern-Volmer Plot showing the estimated LOD of P-C-3 for PPi. 
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Figure S9: 1H NMR spectrum of Compound 6 in CDCl3.
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Figure S10: 1H NMR spectrum of Compound 8 in DMSO-d6.
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Figure S11: 1H NMR spectrum of M-C-3 in CDCl3.
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Figure S12: 1H NMR spectrum of M-O-3 in CDCl3.

Figure S13: 1H NMR spectrum of P-O-3-Boc in CDCl3. 
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Figure S14: 1H NMR spectrum of P-O-3 in D2O and DMSO-d6.

Figure S15: 1H NMR spectrum of P-C-3 in D2O.
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Figure S16: 13C NMR spectrum of M-O-3 in CDCl3.

Figure S17: 13C NMR spectrum of M-C-3 in CDCl3.
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HRMS:

Figure S18: ESI high-resolution mass spectrum of Compound 6.

Figure S19: ESI high-resolution mass spectrum of M-O-3.
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Figure S20: ESI high-resolution mass spectrum of M-C-3.
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