Supporting Information

High Performance Hybrid Tandem White Organic Light-Emitting

Diodes by Using a Novel Intermediate Connector

Changsheng Shi,^a Ning Sun,^c Zhongbin Wu,^a Jiangshan Chen^b and Dongge Ma*^{ab}

a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Changchun 130022, People's Republic of China

b State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China

c Organic Photonics and Electronics Group, Department of Physics, Umeå University, Umeå SE-90187, Sweden

* Corresponding Authors Dongge Ma (<u>mdg1014@ciac.ac.cn</u>, <u>msdgma@scut.edu.cn</u>)

Fig. S1 The current density-luminance-voltage characteristics, current efficiencies and power efficiencies of blue, green, orange and red devices.

Fig. S2 The current efficiencies of devices with three intermediate connectors.

Device	CE	PE	EQE	CIE	CRI	ССТ
	cd A ⁻¹	$lm W^{-1}$	%			Κ
Liq/HAT-CN	11.1ª	3.7ª	6.98,	-	-	-
Liq/Al/HAT-CN	80.2ª	40.7ª	29.28ª	(0.433, 0.388) ^b	46 ^b	2900 ^b
	75.5 ^b	29.2 ^b				
Liq/Ca/HAT-CN	106.3ª	51.4ª	39.57ª	(0.455, 0.398) ^b	41 ^b	2650 ^b
	102.8 ^b	46.9 ^b	38.8 ^b	(0.447, 0.394) ^c	43°	2750°

Table S1. Detailed performances of D1, D2 and D3.

a) Maximum value of measured.

b) Measured at 1000 cd m⁻².

c) Measured at 10000 cd m⁻².

Device	CE	PE	EQE	CIE	CRI	ССТ
	cd A ⁻¹	$\rm lm \ W^{-1}$	%			K
G 5nm/R 5 nm	62.2ª	32.1ª	25.2ª	(0.381, 0.419) ^b	86 ^b	4300 ^b
	61.7 ^b	29.4 ^b	25.0 ^b	(0.375,0.416) ^c	85 ^c	4400 ^c
G 4nm/R 6 nm	57.6ª	29.6ª	24.7ª	(0.390,0.403) ^b	93 ^b	3900 ^b
	57.0 ^b	26.8 ^b	24.5 ^b	(0.385, 0.400) ^c	93 ^c	4000 ^c

Table S2. Detailed performances of D4 and D5.

a) Maximum value of measured.

b) Measured at 1000 cd m⁻².

c) Measured at 10000 cd m⁻².