
Supplementary Information: Journal of Materials Chemistry C: A novel electrically controllable volatile memory device based on few-layer black phosphorus

Liwen Zhang,^{*a,b,e*} Zhizhou Yu,^{*c*} Lei Zhang,^{*a,b,e,**} Xiaohong Zheng,^{*d*,†} Liantuan Xiao,^{*a,e*} Suotang Jia,^{*a,e*} Jian Wang^{*b*}

In this supplementary material, we will show further transport properties details of our proposed model.

Figure 1 presents the LDOS at the Fermi level versus *Z* direction when different vertical gates are applied. It is clear that the LDOS mainly localizes in the topmost or bottom layers and becomes larger as the gate voltage increases.

Figure 1 The LDOS at Fermi level when different vertical gate voltages are applied in electrode. The horizontal dashed-dot black lines represent the central atomic position of each layer.

^c School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China

^aState Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China ^bDepartment of Physics and The Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China

^dKey Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China

^eCollaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China

^{*}zhanglei@sxu.edu.cn

[†]xhzheng@theory.issp.ac.cn