Designing Half-metallic Ferromagnetism by A New Strategy: The Example of Superhalogens Modified Graphitic C₃N₄

Qiushi Yao^{†,⊥}, Min Lu^{†,⊥}, Yongping Du[†], Fang Wu^{‡,*}, Kaiming Deng^{†,§,*}, and Erjun

Kan^{†,§,*}

[†]Department of Applied Physics, and Institution of Energy and Microstructure, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China.

[‡]School of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China

[§]Key Laboratory of Soft Chemistry and Functional Materials (Ministry of Education), Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China.

 $^{\perp}$ These authors contributed equally to this work.

Correspondence should be addressed to:

E. K. (email: ekan@njust.edu.cn), K. D. (email: kmdeng@njust.edu.cn), F. W. (email: fangwu@mail.ustc.edu.cn)

 $\begin{array}{c} \mbox{Figure S1 Spin-resolved band structures and 3D isosurface plots of spin charge density for g-} \\ C_3N_4 & \mbox{doped} & \mbox{by} & \mbox{holes.} \end{array}$

Figure S2 Spin-resolved (a) band structures and (b) partial density of states of $g-C_3N_4BF_4$. (c) Top and side view of 3D isosurface plots of spin charge density for $g-C_3N_4BF_4$.

Figure S3 Variation of the total magnetic moment per $(C_3N_4)_4BF_4$ and $C_3N_4BF_4$ formula unit as a function of temperature obtained from Monte Carlo simulations based on the Ising model.

Figure S4 Fluctuations of ferromagnetic moment as a function of molecular dynamic simulation steps at 300 K.