Supporting Information

Naphthalimide End Capped Anthraquinone Based Solution-Processable *n*-Channel Organic Semiconductors: Effect of Alkyl Chain Engineering on Charge Transport

Thu-Trang Do,^a Yasunori Takeda,^b Sergei Manzhos,^c John Bell,^a Shizuo Tokito^{b*} and Prashant Sonar^{a*}

^aSchool of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD-4001, Australia.

^bResearch Center for Organic Electronics, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.

^cDepartment of Mechanical Engineering, Faculty of Engineering, National University of Singapore

Corresponding email: sonar.prashant@qut.edu.au

Keywords: 1,8-Naphthalimide, 9,10-Anthraquinone, Branched Alkyl Chain, Organic Semiconductors, Field Effect Transistors.

Contents

- 1. Figure S1. (a) ¹H NMR (400 MHz, CDCl₃) spectrum and (b) ¹³C NMR (100 MHz, CDCl₃) spectrum of **NAI-ANQ-NAI (BO)**
- 2. Figure S2. (a) ¹H NMR (400 MHz, CDCl₃) spectrum and (b) ¹³C NMR (100 MHz, CDCl₃) spectrum of **NAI-ANQ-NAI (HD)**
- 3. Figure S3. (a) ¹H NMR (400 MHz, CDCl₃) spectrum and (b) ¹³C NMR (100 MHz, CDCl₃) spectrum of **NAI-ANQ-NAI (DT)**
- 4. Figure S4. Solubility of NAI-ANQ-NAIs (0.5wt %) in chlorobenzene at room temperature
- 5. Figure S5. Solubility of NAI-ANQ-NAIs (0.5wt %) in chlorobenzene at 120 °C
- 6. Figure S6. Film quality of NAI-ANQ-NAI after spin-coating at 1000 rpm for 60 s
- 7. Figure S7. Transfer (a), output (b) characteristics and (c) gate-field dependent mobility of BGTC OFETs based on NAI-ANQ-NAI (BO) at annealing temperature of 140 °C
- 8. Figure S8. Transfer (a), output (b) characteristics and (c) gate-field dependent mobility of BGTC OFETs based on NAI-ANQ-NAI (BO) at annealing temperature of 160 °C
- 9. Figure S9. Transfer (a), output (b) characteristics and (c) gate-field dependent mobility of BGTC OFETs based on NAI-ANQ-NAI (BO) at annealing temperature of 180 °C
- 10. Figure S10. Transfer (a), output (b) characteristics and (c) gate-field dependent mobility of BGTC OFETs based on NAI-ANQ-NAI (HD) at annealing temperature of 140 °C
- 11. Figure S11. Transfer (a), output (b) characteristics and (c) gate-field dependent mobility of BGTC OFETs based on NAI-ANQ-NAI (HD) at annealing temperature of 160 °C
- 12. Figure S12. Transfer (a), output (b) characteristics and (c) gate-field dependent mobility of BGTC OFETs based on NAI-ANQ-NAI (HD) at annealing temperature of 180 °C
- Figure S13. Transfer (a), output (b) characteristics and (c) gate-field dependent mobility of BGTC OFETs based on NAI-ANQ-NAI (DT) at annealing temperature of 140 °C
- 14. Figure S14. Transfer (a), output (b) characteristics and (c) gate-field dependent mobility of BGTC OFETs based on NAI-ANQ-NAI (DT) at annealing temperature of 160 °C
- 15. Figure S15. Transfer (a), output (b) characteristics and (c) gate-field dependent mobility of BGTC OFETs based on NAI-ANQ-NAI (DT) at annealing temperature of 180 °C
- 16. Figure S16. Transfer (left) characteristics and (right) gate-field dependent mobility of BGTC OFETs based on NAI-ANQ-NAI (BO) at annealing temperature of 240 °C.

- 17. Figure S17. Transfer (left) characteristics and (right) gate-field dependent mobility of BGTC OFETs based on NAI-ANQ-NAI (HD) at annealing temperature of 240 °C.
- 18. Figure S18. Transfer (left) characteristics and (right) gate-field dependent mobility of BGTC OFETs based on NAI-ANQ-NAI (DT) at annealing temperature of 240 °C.
- 19. Figure S19. AFM images (5μ x 5μ) of thin films of NAI-ANQ-NAI (BO), NAI-ANQ-NAI (HD) and NAI-ANQ-NAI (DT) at annealing temperature of 240 °C.
- 20. Table S1. Electron-transport properties of NAI-ANQ-NAI (BO) compounds based OFET devices annealed at 140 °C
- 21. Table S2. Electron-transport properties of NAI-ANQ-NAI (BO) compounds based OFET devices annealed at 160 °C
- 22. Table S3. Electron-transport properties of NAI-ANQ-NAI (BO) compounds based OFET devices annealed at 180 °C
- 23. Table S4. Electron-transport properties of NAI-ANQ-NAI (HD) compounds based OFET devices annealed at 140 °C
- 24. Table S5. Electron-transport properties of NAI-ANQ-NAI (HD) compounds based OFET devices annealed at 160 °C
- 25. Table S6. Electron-transport properties of NAI-ANQ-NAI (HD) compounds based OFET devices annealed at 180 °C
- 26. Table S7. Electron-transport properties of NAI-ANQ-NAI (DT) compounds based OFET devices annealed at 140 °C
- 27. Table S8. Electron-transport properties of NAI-ANQ-NAI (DT) compounds based OFET devices annealed at 160 °C
- 28. Table S9. Electron-transport properties of NAI-ANQ-NAI (DT) compounds based OFET devices annealed at 180 °C
- 29. Table S10. Electron-transport properties of NAI-ANQ-NAI (BO) compounds based OFET devices annealed at 200 °C
- 30. Table S11. Electron-transport properties of NAI-ANQ-NAI (HD) compounds based OFET devices annealed at 200 °C
- 31. Table S12. Electron-transport properties of NAI-ANQ-NAI (DT) compounds based OFET devices annealed at 200 °C

Figure S1. (a) ¹H NMR (400 MHz, CDCl₃) spectrum and (b) ¹³C NMR (100 MHz, CDCl₃) spectrum of **NAI-ANQ-NAI (BO)**

Figure S2. (a) ¹H NMR (400 MHz, CDCl₃) spectrum and (b) ¹³C NMR (100 MHz, CDCl₃) spectrum of **NAI-ANQ-NAI (HD)**

Figure S3. (a) ¹H NMR (400 MHz, CDCl₃) spectrum and (b) ¹³C NMR (100 MHz, CDCl₃) spectrum of **NAI-ANQ-NAI (DT)**

Precipitation

Precipitation

No Precipitation

Figure S4. Solubility of NAI-ANQ-NAIs (0.5wt %) in chlorobenzene at room temperature

NAI-ANQ-NAI (BO)

NAI-ANQ-NAI (HD)

NAI-ANQ-NAI (DT)

No Precipitation

No Precipitation

No Precipitation

Figure S5. Solubility of NAI-ANQ-NAIs (0.5wt %) in chlorobenzene at 120 °C

NAI-ANQ-NAI (BO)NAI-ANQ-NAI (HD)NAI-ANQ-NAI (DT)Image: transformed black state s

Figure S6. Film quality of NAI-ANQ-NAI after spin-coating at 1000 rpm for 60 s

Figure S7. Transfer (a), output (b) characteristics and (c) gate-field dependent mobility of BGTC OFETs based on **NAI-ANQ-NAI (BO)** at annealing temperature of 140 °C

Table S1. Electron-transport properties of NAI-ANQ-NAI (BO) compounds based OFET devices annealed at 140 °C

Device	Mobility (cm ² .v ⁻¹ s ⁻¹)	I_/I_ on off	V _{TH} (V)
1	3.45 x 10 ⁻⁴	4.68 x 10 ³	33.02
2	2.57 x 10 ⁻³	6.44 x 10 ⁴	40.61
3	1.47 x 10 ⁻³	2.12 x 10 ⁵	38.44
4	3.53 x 10 ⁻³	$1.95 \ge 10^4$	35.40
5	3.94 x 10 ⁻³	3.68 x 10 ⁵	38.13
Avg	2.37 x 10 ⁻³	1.34 x 10 ⁵	37.1

Figure S8. Transfer (a), output (b) characteristics and (c) gate-field dependent mobility of BGTC OFETs based on **NAI-ANQ-NAI (BO)** at annealing temperature of 160 °C

Table S2. Electron-transport properties of **NAI-ANQ-NAI (BO)** compounds based OFET devices annealed at 160 °C

Device	Mobility (cm ² .v ⁻¹ s ⁻¹)	I_/I on_off	V _{TH} (V)
1	5.69 x 10 ⁻³	3.33 x 10 ⁵	38.44
2	5.21 x 10 ⁻³	6.00 x 10 ⁵	41.65
3	4.41 x 10 ⁻³	1.29 x 10 ⁵	37.96
4	7.13 x 10 ⁻³	6.26 x 10 ⁵	36.94
5	9.93 x 10 ⁻³	4.21 x 10 ⁶	38.37
Avg	6.47 x 10 ⁻³	1.18 x 10 ⁶	38.7

Figure S9. Transfer (a), output (b) characteristics and (c) gate-field dependent mobility of BGTC OFETs based on **NAI-ANQ-NAI (BO)** at annealing temperature of 180 °C

Table S3. Electron-transport properties of **NAI-ANQ-NAI (BO)** compounds based OFET devices annealed at 180 °C

Device	Mobility (cm ² .v ⁻¹ s ⁻¹)	I_/I_ on_off	V _{TH} (V)
1	1.95 x 10 ⁻²	1.16 x 10 ⁶	33.69
2	1.53 x 10 ⁻²	1.63 x 10 ⁷	29.80
3	2.71 x 10 ⁻²	1.78 x 10 ⁷	34.96
4	2.27 x 10 ⁻²	4.17 x 10 ⁵	32.30
5	2.31 x 10 ⁻²	1.27 x 10 ⁷	34.59
Avg	2.16 x 10 ⁻²	9.68 x 10 ⁶	38.7

Figure S10. Transfer (a), output (b) characteristics and (c) gate-field dependent mobility of BGTC OFETs based on **NAI-ANQ-NAI (HD)** at annealing temperature of 140 °C

Table S4. Electron-transport properties of **NAI-ANQ-NAI (HD)** compounds based OFET devices annealed at 140 °C

Device	Mobility (cm ² .v ⁻¹ s ⁻¹)	I_/I_ on/off	V _{TH} (V)
1	5.59 x 10 ⁻³	3.08 x 10 ⁴	37.11
2	2.81 x 10 ⁻³	$1.63 \ge 10^4$	33.23
3	2.92 x 10 ⁻³	$1.07 \ge 10^5$	36.89
4	1.20 x 10 ⁻³	$3.00 \ge 10^4$	29.96
5	3.95 x 10 ⁻³	$5.04 \ge 10^4$	36.65
Avg	3.29 x 10 ⁻³	4.69 x 10 ⁴	34.77

Figure S11. Transfer (a), output (b) characteristics and (c) gate-field dependent mobility of BGTC OFETs based on **NAI-ANQ-NAI (HD)** at annealing temperature of 160 °C

Table S5. Electron-transport properties of **NAI-ANQ-NAI (HD)** compounds based OFET devices annealed at 160 °C

Device	Mobility (cm ² .v ⁻¹ s ⁻¹)	I_/I_ on/off	V _{TH} (V)
1	3.91 x 10 ⁻³	2.51 x 10 ⁴	31.91
2	6.64 x 10 ⁻³	$1.79 \ge 10^4$	36.18
3	9.60 x 10 ⁻³	1.39 x 10 ⁷	34.01
4	7.67 x 10 ⁻³	$1.79 \ge 10^4$	32.34
5	6.48 x 10 ⁻³	2.88 x 10 ⁵	35.24
Avg	6.87 x 10 ⁻³	2.86 x 10 ⁶	33.9

Figure S12. Transfer (a), output (b) characteristics and (c) gate-field dependent mobility of BGTC OFETs based on **NAI-ANQ-NAI (HD)** at annealing temperature of 180 °C

Table S6. Electron-transport properties of **NAI-ANQ-NAI (HD)** compounds based OFET devices annealed at 180 °C

Device	Mobility (cm ² .v ⁻¹ s ⁻¹)	I_/I_ on/off	$V_{_{TH}}(V)$
1	1.08 x 10 ⁻²	1.88 x 10 ⁵	25.60
2	1.60 x 10 ⁻²	6.67 x 10 ⁵	31.07
3	1.78 x 10 ⁻²	$3.17 \ge 10^5$	30.06
4	1.36 x 10 ⁻²	2.23 x 10 ⁵	31.02
5	1.93 x 10 ⁻²	1.40 x 10 ⁵	31.48
Avg	1.55 x 10 ⁻²	7.57 x 10 ⁵	29.9

Figure S13. Transfer (a), output (b) characteristics and (c) gate-field dependent mobility of BGTC OFETs based on **NAI-ANQ-NAI (DT)** at annealing temperature of 140 °C

Table S7. Electron-transport properties of **NAI-ANQ-NAI (DT)** compounds based OFET devices annealed at 140 °C

Device	Mobility (cm ² .v ⁻¹ s ⁻¹)	I_/I_ on/off	V _{TH} (V)
1	9.53 x 10 ⁻³	6.15 x 10 ⁵	38.70
2	7.87 x 10 ⁻³	4.73 x 10 ⁵	39.44
3	9.40 x 10 ⁻³	9.27 x 10 ⁵	39.25
4	9.80 x 10 ⁻³	1.29 x 10 ⁶	40.58
5	9.40 x 10 ⁻³	3.24 x 10 ⁵	40.26
Avg	9.20 x 10 ⁻³	7.26 x 10 ⁵	39.65

Figure S14. Transfer (a), output (b) characteristics and (c) gate-field dependent mobility of BGTC OFETs based on **NAI-ANQ-NAI (DT)** at annealing temperature of 160 °C

Table S8. Electron-transport properties of **NAI-ANQ-NAI (DT)** compounds based OFET devices annealed at 160 °C

Device	Mobility (cm ² .v ⁻¹ s ⁻¹)	I_/I_ on off	V _{TH} (V)
1	1.33 x 10 ⁻²	1.08 x 10 ⁵	37.35
2	1.72 x 10 ⁻²	4.93 x 10 ⁷	38.37
3	1.88 x 10 ⁻²	4.93 x 10 ⁷	38.34
4	1.26 x 10 ⁻²	3.18 x 10 ⁶	38.39
5	1.75 x 10 ⁻²	5.69 x 10 ⁶	38.72
Avg	1.59 x 10 ⁻²	2.15 x 10 ⁷	38.23

Figure S15. Transfer (a), output (b) characteristics and (c) gate-field dependent mobility of BGTC OFETs based on **NAI-ANQ-NAI (DT)** at annealing temperature of 180 °C

Table S9. Electron-transport properties of **NAI-ANQ-NAI (DT)** compounds based OFET devices annealed at 180 °C

Device	Mobility (cm ² .v ⁻¹ s ⁻¹)	I_0/I_0ff	V _{TH} (V)
1	1.89 x 10 ⁻²	7.65 x 10 ⁵	26.90
2	2.21 x 10 ⁻²	9.43 x 10 ⁵	26.89
3	1.97 x 10 ⁻²	7.28 x 10 ⁵	27.02
4	1.89 x 10 ⁻²	1.34 x 10 ⁵	25.83
5	2.17 x 10 ⁻²	9.01 x 10 ⁵	28.20
Avg	2.03 x 10 ⁻²	9.34 x 10 ⁵	26.97

Table S10. Electron-transport properties of NAI-ANQ-NAI (BO) compounds based OFET devices

Compound	Device	Electron Mobility (cm ² .V ⁻¹ s ⁻¹)	I_/I_ on_off	$V_{th}(V)$
	1	2.79 x 10 ⁻²	1.06 x 10 ⁷	24.27
	2	1.89 x 10 ⁻²	1.44 x 10 ⁷	24.62
NAI-ANQ-NAI	3	2.25 x 10 ⁻²	9.93 x 10 ⁴	25.06
(BO)	4	1.53 x 10 ⁻²	9.86 x 10 ⁴	23.58
	5	1.61 x 10 ⁻²	2.88 x 10 ⁵	23.01
	Avg	2.01 x 10 ⁻²	5.10 x 10 ⁶	24.1

annealed at 200 °C

Table S11. Electron-transport properties of **NAI-ANQ-NAI (HD)** compounds based OFET devices annealed at 200 °C

Compound	Device	Electron Mobility	I /I	V (V)
Compound	Device	$(cm^2.V^{-1}s^{-1})$	on off	th
	1	1.32 x 10 ⁻²	1.09 x 10 ⁵	19.31
	2	2.09 x 10 ⁻²	2.39 x 10 ⁵	22.37
NAI-ANQ-NAI	3	1.73 x 10 ⁻²	1.45 x 10 ⁶	21.32
(HD)	4	1.39 x 10 ⁻²	3.21 x 10 ⁵	21.88
	5	2.05 x 10 ⁻²	2.45 x 10 ⁵	21.75
	Avg	1.71 x 10 ⁻²	4.73 x 10 ⁵	21.3

Table S12. Electron-transport properties of **NAI-ANQ-NAI (DT)** compounds based OFET devices annealed at 200 °C

Compound	Device	Electron Mobility (cm ² .V ⁻¹ s ⁻¹)	I /I on off	$V_{th}(V)$
	1	1.52 x 10 ⁻²	1.54 x 10 ⁵	17.03
	2	2.40 x 10 ⁻²	2.56 x 10 ⁵	13.38
NAI-ANQ-	3	8.40 x 10 ⁻³	1.02 x 10 ⁵	16.90
NAI (DT)	4	1.41 x 10 ⁻²	2.26 x 10 ⁵	18.42
	5	2.27 x 10 ⁻²	3.65 x 10 ⁵	19.37
	Avg	1.69 x 10 ⁻²	2.28 x 10 ⁵	21.3

Figure S16. Transfer (left) characteristics and (right) gate-field dependent mobility of BGTC OFETs based on **NAI-ANQ-NAI (BO)** at annealing temperature of 240 °C.

Figure S17. Transfer (left) characteristics and (right) gate-field dependent mobility of BGTC OFETs based on **NAI-ANQ-NAI (HD)** at annealing temperature of 240 °C.

Figure S18. Transfer (left) characteristics and (right) gate-field dependent mobility of BGTC OFETs based on **NAI-ANQ-NAI (DT)** at annealing temperature of 240 °C.

Figure S19. AFM images $(5\mu \times 5\mu)$ of thin films of **NAI-ANQ-NAI (BO)**, **NAI-ANQ-NAI (HD)** and **NAI-ANQ-NAI (DT)** at annealing temperature of 240°C.