Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Pure white light emission from Rare Earth free intrinsic Metal Organic Framework and its application in WLED

Tuhina Mondal^a, Supriya Mondal^{a,b,#}, Saptasree Bose^{a,#}, Debabrata Sengupta^c, Uttam Kumar

Ghorai^d and Shyamal K. Saha*,a

^aDepartment of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.

^bDepartment of Physics, Chapra Govt. College, Chapra, Nadia, West Bengal-741123, India.

^cDepartment of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.

^dDepartment of Industrial Chemistry and Applied Chemistry, Swami Vivekananda Research

Center, Ramakrishna Mission Vidyamandira, Belur Math, Howrah-711202, India.

*Email of corresponding author: <u>cnssks@iacs.res.in</u>

Supriya Mondal and Saptasree Bose contributed equally

*Email of corresponding author: <u>cnssks@iacs.res.in</u>

SI 1. Crystallographic Data forZnipaPy₂:

Empirical formula	C ₁₈ H ₁₇ N ₅ O ₆ Zn
Formula weight	464.73
Temperature/K	100
Crystal system	Monoclinic
Space group	P2 ₁ /c
a/Å	8.617(8)
b/Å	22.95(2)
c/Å	10.243(9)
α/°	90
β/°	102.365(15)
$\gamma/^{\circ}$	90
Volume/Å ³	1978(3)
Ζ	4
$\rho_{calc}g/cm^3$	1.560
μ/mm ⁻¹	1.288
F(000)	952.0
Crystal size/mm ³	$0.16 \times 0.12 \times 0.08$
Radiation	$MoK\alpha \ (\lambda = 0.71073)$
2Θ range for data collection/°	3.5 to 46.6
Index ranges	$-9 \le h \le 9, -25 \le k \le 25, -11 \le l \le 10$
Reflections collected	12204
Independent reflections	2855 [$R_{int} = 0.1647, R_{sigma} = 0.1503$]
Data/restraints/parameters	2855/0/271
Goodness-of-fit on F ²	1.002
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0597, wR_2 = 0.1312$
Final R indexes [all data]	$R_1 = 0.1372, wR_2 = 0.1807$
Largest diff. peak/hole / e Å ⁻³	0.53/-0.83

Figure SI2: Thermogravimetric analysis (TGA) of ZnipaPy₂

Figure SI3: FT-IR spectrum of ZnipaPy₂.

Absorption Spectroscopy:

Absorption spectroscopy of $ZnipaPy_2$ was measured by dissolving the solid sample in acetonitrile solvent.

Figure SI4: Absorption Spectrum of ZnipaPy₂

Photoluminiscence emission intensity comparision:

Figure SI5: Comparison of photoluminescence intensities of as synthesised MOF and after heating it at 177°C.

Figure SI6: The possible transitions shown by DFT.

Photoluminescence Excitation spectra:

Figure SI7: Photoluminescence excitation spectra monitoring (a) 385 nm emission (b) 468 nm emission (c) 593 nm emission peaks.

TCSPC Measurement:

Figure SI8: Lifetime decay curve of ZnipaPy₂

Figure SI9: Lifetime decay curve of the free ligand

HOMO –LUMO band position calculation:

To estimate the actual, the band alignment of the ZnipaPy2 material we have used cyclic voltammetry and Uv-Vis spectroscopy. The measurements were performed at room temperature under an inert atmosphere using a three electrode system consisting of a Pt wire as the counter and working electrodes and Ag/Ag+ as the reference electrode. The positions of LUMO orbital of the ZnipaPy2 was obtained from the onset reduction potential (E_{red}) using the followingequations¹.

$$E_{CB/LUMO} = -(E_{red} + 4.71) eV = -(-1.1 + 4.71) eV = -3.61 eV$$

Here the potential is considered with respect to Ag/Ag⁺ reference electrode.

The difference between HOMO and LUMO was obtained from UV-Vis spectroscopy using standard method². The Difference is found to be 2.09 eV. Therefore, The Position of HOMO would be (-3.61-2.09) eV = -5.70 eV.

Figure SI10: CV diagram of ZnipaPy₂

Cyclic Voltammogram of the ZnipaPy₂ in acetonitrile solvent with tetrabutylammonium perchlorate as supporting electrolyte. The potential is reference with respect to Ag/Ag^+ reference electrode.

References:

1. M. K. Barman, P. Mitra, R. Bera, S. Das, A. Pramanik, and A. Parta, *Nanoscale*, 2017,9, 6791-6799

2. V. Srikant, and D. R. Clarke, Journal of Applied Physics, 1998, 83, 5447