ESI for Towards Predicting Power Conversion Efficiencies of Organic Solar Cells from Donor and Acceptor Molecule Structures

Yecheng Zhou,^{*,†,§} Guankui Long,^{‡,§} Ailin Li,[¶] Angus Gray-Weale ,[†] Yongsheng Chen,[‡] and Tianying Yan[¶]

[†]School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia

‡Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China

¶College of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300071, China &Contributed equally to this work

E-mail: zhouych87@gmail.com

Basis benchmark

Table S1: Consumed time and electron-transfer coupling for various basis sets. Each calculation is performed at one node with 12 CPUs. The calculated dimer is molecule 1 ($PC_{71}BM$) and molecule 437 (DERHD7T).

Basis Sets	3-21g*	6-31g	6-31g*	6-31g**	6-311g*	6-311g**
RealTime(HH:MM:SS)	1:06:20	1:09:59	3:03:55	3:51:36	5:50:52	7:02:31
Couplings (meV)	-22.4070	-21.2460	20.9120	21.0390	-21.572	-21.745

DERHD7T thin film

Figure S1: DERHD7T thin film structure. The VDW surfaces of DERHD7T molecules are shown in green and $PC_{71}BM$ VDW surfaces are colored with red.

Site energies

Table S2: The gas phase HOMO and LUMO energy levels of DRCN5T, DRCN7T, DERHD7T, $\rm PC_{71}BM$ molecules at ground states.

Basis	B3LYP/6-311G*		B3LYP/6-31G*	
Molecules	HOMO (eV)	LUMO (eV)	HOMO (eV)	LUMO (eV)
DRCN5T	-5.38	-3.40	-5.21	-3.19
DRCN7T	-5.09	-3.30	-4.93	-3.08
DERHDD7T	-4.93	-3.04	-4.81	-2.87
$PC_{71}BM$	-5.90	-3.40	-5.68	-3.14

Table S3: Distributions of HOMO energy levels of DRCN5T, DRCN7T, DERHD7T molecules in blend and single component thin films. The unit is eV.

Molecules	Blen	ıd	Pur	e
	Average	σ	Average	σ
DRCN5T	-5.48	0.121	-5.49	0.117
DRCN7T	-5.26	0.138	-5.26	0.135
DERHD7T	-5.18	0.116	-5.15	0.114

Figure S2: Distribution of LUMO energy levels. A) LUMOs of DRCN5T molecules in DRCN5T/PC₇₁BM film; B) LUMOs of DRCN7T molecules in DRCN7T/PC₇₁BM film; C) LUMOs of DERHD7T molecules in DERHD7T/PC₇₁BM film; D) LUMOs of DRCN5T molecules in DRCN5T film; E) LUMOs of DRCN7T molecules in DRCN7T film; F) LUMOs of DERHD7T molecules in DRCN7T film; F) LUMOs of DERHD7T molecules in DERHD7T film. Blue lines are the fitted Gaussian distributions.

Table S4: Distributions of LUMO energy levels of DRCN5T, DRCN7T, DERHD7T molecules in blend and single component thin films. The unit is eV.

Molecules	Blen	d	Pur	e
	Average	σ	Average	σ
DRCN5T	-3.05	0.088	-3.07	0.086
DRCN7T	-3.00	0.092	-3.00	0.089
DERHD7T	-2.78	0.084	-2.72	0.082

Figure S3: Distribution of HOMO energy levels. A) HOMOs of $PC_{71}BM$ molecules in DRCN5T:PC₇₁BM film; B) HOMOs of $PC_{71}BM$ molecules in DRCN7T:PC₇₁BM film; C) HOMOs of $PC_{71}BM$ molecules in DERHD7T:PC₇₁BM film; D) HOMOs of $PC_{71}BM$ molecules in $PC_{71}BM$ film; Blue lines are the fitted Gaussian distributions.

Figure S4: Distribution of LUMO energy levels. A) LUMOs of $PC_{71}BM$ molecules in DRCN5T:PC₇₁BM film; B) LUMOs of $PC_{71}BM$ molecules in DRCN7T:PC₇₁BM film; C) LUMOs of $PC_{71}BM$ molecules in DERHD7T:PC₇₁BM film; D) LUMOs of $PC_{71}BM$ molecules in PC₇₁BM film; Blue lines are the fitted Gaussian distributions.

Table S5: Distributions of HOMO and LUMO energy levels of $PC_{71}BM$ in DRCN5T:PC₇₁BM, DRCN7T:PC₇₁BM, DERHD7T:PC₇₁BM and single-component $PC_{71}BM$ thin films.

Orbitals	HOMO	(eV)	LUMO(eV)	
Molecules	Average	σ	Average	σ
DRCN5T	-5.74	0.053	-3.76	0.060
DRCN7T	-5.74	0.056	-3.76	0.063
DERHD7T	-5.74	0.054	-3.77	0.061
PC71BM	-5.75	0.053	-3.76	0.058

Electronic Coupling

Figure S5: Couplings in single-component donor and $PC_{71}BM$ thin films.

Figure S6: Couplings between different components of blend films. The first column is couplings in DRCN5T:PC₇₁BM film; the second column are that of DRCN7T:PC₇₁BM film; the last column is that of DERHD7T:PC₇₁BM film. The topmost are overall couplings of all components of blend films. From the second to the fourth row are couplings of donor-donor, donor-acceptor and acceptor-acceptor respectively. For the convenience of view, labels are removed. The x-lab is "D_atom", which is the distance of nearest atom of two molecules. The y-lab is "Couplings (meV)"

Figure S7: Frontier orbitals of dimer 240-374 in DRCN7T:PC₇₁BM. Molecule 240 is DRCN7T and molecule 374 is PC71BM. They show a LUMO-LUMO coupling of 99.47 meV, but a small HOMO-HOMO coupling of 0.01 meV. A), B), C) and D) are the HOMO-2, HOMO-1, LUMO-2 and LUMO-1 of dimer, respectively.

Figure S8: Frontier orbitals of dimer 18-549 in DRCN7T:PC₇₁BM. Molecule 18 is DRCN7T and molecule 549 is PC71BM. They show a small LUMO-LUMO coupling of 2.3meV meV, but a large HOMO-HOMO coupling of 63.4 meV. A), B), C) and D) are the HOMO-2, HOMO-1, LUMO-2 and LUMO-1 of dimer, respectivily.

Table S6: The mean square coupling of $\rm DRCN5T:PC_{71}BM$ blend and single-component thin films. The unit is meV.

Orbitals	Pure	All of Blend	D-D of Blend	D-A of Blend	A-A of Blend
LUMO-LUMO	174.41	125.47	139.30	99.81	156.68
НОМО-НОМО	164.68	121.85	176.64	69.00	126.10
LUMO-HOMO	246.97	178.28	200.10	142.74	215.40
HOMO-LUMO	189.36	188.85	265.14	119.59	184.23

Table S7: The mean square coupling of DRCN7T: PC₇₁BM blend and single-component thin films. The unit is meV.

Orbitals	Pure	All of Blend	D-D of Blend	D-A of Blend	A-A of Blend
LUMO-LUMO	174.29	118.31	103.98	109.35	155.36
НОМО-НОМО	104.20	76.60	72.23	62.66	110.41
LUMO-HOMO	176.46	128.05	87.16	131.50	175.53
HOMO-LUMO	113.35	139.51	160.89	96.20	198.00

Table S8: The mean square coupling of DERHD7T: PC71BM blend and single-component thin films. The unit is meV.

Orbitals	Pure	All of Blend	D-D of Blend	D-A of Blend	A-A of Blend
LUMO-LUMO	157.97	91.43	80.98	75.12	142.72
НОМО-НОМО	110.09	87.00	95.15	74.85	100.83
LUMO-HOMO	84.54	162.60	153.82	184.29	129.09
HOMO-LUMO	137.60	105.89	103.96	76.95	171.45

Table S9: The mean square coupling of all blend and single-component thin films. The unit is meV.

Orbitals	DERI	HD7T	DRC	CN5T	DRC	'N7T	PC ₇₁ BM
Orbitals	Pure	Blend	Pure	Blend	Pure	Blend	single-component
LUMO-LUMO	157.97	91.43	174.41	125.47	174.29	118.31	164.99
НОМО-НОМО	110.09	87.00	164.68	121.85	104.20	76.60	132.82
LUMO-HOMO	84.54	162.60	246.97	178.28	176.46	128.05	220.42
HOMO-LUMO	137.60	105.89	189.36	188.85	113.35	139.51	191.79

Parameters in numerical simulations

	V 7-1	<u>C</u>
Parameters	value	Source
$N_c(acceptor)$	$3.20 \times 10^{18} \text{ cm}^{-3}$	DFT
$N_v(\text{donor})$	$3.39 \times 10^{18} \mathrm{~cm^{-3}}$	DFT
$\operatorname{Min}(\mathbf{E}_{LUMO}^{donor})$	-3.298 eV	DFT
$Max(E_{HOMO}^{donor})$	-5.177 eV	DFT
$\operatorname{Min}(\operatorname{E}_{LUMO}^{acceptor})$	-3.980 eV	DFT
$\mathbf{E}_{gap}^{absorption}$	$1.880~{\rm eV}$	$\operatorname{Min}(\mathbf{E}_{LUMO}^{donor})$ - $\operatorname{Max}(\mathbf{E}_{HOMO}^{donor})$
E_{gap}^{V}	$1.197~{\rm eV}$	$\operatorname{Min}(\operatorname{E}_{LUMO}^{acceptor})$ - $\operatorname{Max}(\operatorname{E}_{HOMO}^{donor})$
\tilde{D}_e	$1.49 \times 10^{-4} \mathrm{cm}^2 \mathrm{s}^{-1}$	DFT & RW simulation
D_h	$1.59 \times 10^{-4} \mathrm{cm}^2 \mathrm{s}^{-1}$	DFT & RW simulation
ϵ	4	Ref. 1,2
lpha	$1.5 \times 10^{6} {\rm ~cm^{-1}}$	Ref. 3
au	$3~\mu{ m s}$	Ref. 4
Thickness	120 nm	Ref. 5

Table S10: Parameters of DRCN5T: PC_{71}BM solar cell.

Table S11: Parameters of $\mathrm{DRCN7T}{:}\mathrm{PC}_{71}\mathrm{BM}$ solar cell.

Parameters	Value	Source
$N_c(acceptor)$	$2.93 \times 10^{18} \text{ cm}^{-3}$	DFT
$N_v(\text{donor})$	$9.38 \times 10^{18} \mathrm{~cm^{-3}}$	DFT
$\operatorname{Min}(\mathbf{E}_{LUMO}^{donor})$	-3.209 eV	DFT
$Max(E_{HOMO}^{donor})$	-4.954 eV	DFT
$\operatorname{Min}(\operatorname{E}_{LUMO}^{acceptor})$	-3.984 eV	DFT
$\mathbf{E}_{gap}^{absorption}$	$1.745~\mathrm{eV}$	$\operatorname{Min}(\operatorname{E}_{LUMO}^{donor})$ - $\operatorname{Max}(\operatorname{E}_{HOMO}^{donor})$
E^{V}_{gap}	$0.970~{\rm eV}$	$\operatorname{Min}(\operatorname{E}_{LUMO}^{acceptor})$ - $\operatorname{Max}(\operatorname{E}_{HOMO}^{donor})$
\check{D}_e	$6.88 \times 10^{-6} \mathrm{cm}^2 \mathrm{s}^{-1}$	DFT & RW simulation
D_h	$1.72 \times 10^{-5} \mathrm{cm}^2 \mathrm{s}^{-1}$	DFT & RW simulation
ϵ	4	Ref. 1,2
lpha	$1.5 \times 10^{6} {\rm ~cm^{-1}}$	Ref. 3
au	$3~\mu{ m s}$	Ref. 4
Thickness	120 nm	Ref. 5

Parameters	Value	Source
$N_c(acceptor)$	$2.95 \times 10^{18} \text{ cm}^{-3}$	DFT
$N_v(\text{donor})$	$3.71 \times 10^{18} \mathrm{~cm^{-3}}$	DFT
$\operatorname{Min}(\mathbf{E}_{LUMO}^{donor})$	-2.987 eV	DFT
$Max(E_{HOMO}^{donor})$	-4.870 eV	DFT
$\operatorname{Min}(\operatorname{E}_{LUMO}^{acceptor})$	-3.978 eV	DFT
$\mathbf{E}_{gap}^{absorption}$	1.883 eV	$\operatorname{Min}(\mathbf{E}_{LUMO}^{donor})$ - $\operatorname{Max}(\mathbf{E}_{HOMO}^{donor})$
\mathbf{E}_{gap}^{V}	$0.892~{\rm eV}$	$\operatorname{Min}(\operatorname{E}_{LUMO}^{acceptor})$ - $\operatorname{Max}(\operatorname{E}_{HOMO}^{donor})$
\check{D}_e	$1.90 \times 10^{-4} \mathrm{cm}^2 \mathrm{s}^{-1}$	DFT & RW simulation
D_h	$2.95 \times 10^{-5} \mathrm{cm}^2 \mathrm{s}^{-1}$	DFT & RW simulation
ϵ	4	Ref. 1,2
α	$1.5 \times 10^{6} {\rm ~cm^{-1}}$	Ref. 3
au	$3~\mu{ m s}$	Ref. 4
Thickness	120 nm	Ref. 5

Table S12: Parameters of DERHD7T:PC₇₁BM solar cell.

References

- Torabi, S.; Jahani, F.; Van Severen, I.; Kanimozhi, C.; Patil, S.; Havenith, R. W. A.; Chiechi, R. C.; Lutsen, L.; Vanderzande, D. J. M.; Cleij, T. J.; Hummelen, J. C.; Koster, L. J. A. Adv. Funct. Mater. 2015, 25, 150–157.
- (2) Armin, A.; Stoltzfus, D. M.; Donaghey, J. E.; Clulow, A. J.; Nagiri, R. C. R.; Burn, P. L.; Gentle, I. R.; Meredith, P. J. Mater. Chem. C 2017, 5, 3736–3747.
- (3) Hoppe, H.; Sariciftci, N. S. J. Mater. Res. 2004, 19, 1924–1945.
- (4) Vijila, C.; Singh, S. P.; Williams, E.; Sonar, P.; Pivrikas, A.; Philippa, B.; White, R.; Naveen Kumar, E.; Gomathy Sandhya, S.; Gorelik, S.; Hobley, J.; Furube, A.; Matsuzaki, H.; Katoh, R. J. Appl. Phys. 2013, 114, 184503.
- (5) Kan, B. et al. J. Am. Chem. Soc. 2015, 137, 3886–3893.