Supporting information

Enhanced optoelectronic performance in $AgBiS_2$ nanocrystals from an improved amine-based synthesis route

Long Hu,[†] Robert J. Patterson,^{†,*} Zhilong Zhang,[†] Yicong Hu,[†] Dengbing Li,[‡] Zihan Chen,[†] Lin Yuan,[†] Zhi Li Teh,[†] Yijun Gao,[†] Gavin J. Conibeer[†] and Shujuan, Huang ^{†,*}

^{*†*} Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia

[‡] Wuhan National Laboratory for Optoelecronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

Figure S1. XPS spectra of AgBiS₂ films treated with TMAI.

Table S1. Element content of AgBiS₂ nanocrystal film treated with TMAI

Element (Atom content %)	Ag	Bi	S	I
M-AgBiS2	11.21	12.3	17.8	7
C-AgBiS2	9.35	11.5	16.9	6.5

Figure S2. Top view scanning electron microscopy images of (a) M-AgBiS₂ film (b) C-AgBiS₂ film.

Figure S3. The absorption curves of both AgBiS₂ nanocrystal films.