Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Electronic supplementary information

Tailored fabrication of a prospective acousto-optic crystal $TiTe_3O_8$ endowed with high performance

Weiqun Lu, Zeliang Gao,* Qian Wu, Xiangxin Tian, Youxuan Sun, Yang Liu and Xutang Tao*

Contents

Fig. S1 Temperature dependence of thermal expansion for TiTe₃O₈ along the crystallography *a*-axis.

Fig. S2 Temperature dependence of specific heat for TiTe₃O₈.

Fig. S3 Thermal diffusivity as a function of temperature for TiTe₃O₈ along the crystallography *a*-axis.

Fig. S4 UV-visible diffuse reflectance spectra data for ground powders of the TiTe₃O₈ crystal. The inset shows the relationship between

 (α/S) and E (eV).

Table S1 Selected bond lengths (Å) and angles (deg.) in TiTe₃O₈.

Table S2 Measured values for the refractive indices of TiTe₃O₈ at different wavelengths.

Fig. S1 Temperature dependence of thermal expansion for TiTe₃O₈ along the crystallography *a*-axis.

Fig. S2 Temperature dependence of specific heat for TiTe₃O₈.

Fig. S3 Thermal diffusivity as a function of temperature for TiTe₃O₈ along the crystallography *a*-axis.

Fig. S4 UV-visible diffuse reflectance spectra data for ground powders of the $TiTe_3O_8$ crystal. The inset shows the relationship between (α/S) and *E* (eV).

Table S1 Selected bond lengths	(Å)) and angles ((deg.) i	n TiTe ₃ O ₈ .
--------------------------------	-----	----------------	----------	--------------------------------------

Te1–O1 ⁱ	1.884(2)	Ti1–O1 ⁱ	1.952(2)
Te1–O1 ⁱⁱ	1.884(2)	Ti1–O1 ^{vii}	1.952(2)
Te1–O2	2.1185(7)	Ti1–O1 ^{viii}	1.952(2)
Te1–O2 ⁱⁱⁱ	2.1185(7)	O2–Te1 ^{ix}	2.1185(7)
Ti1–O1 ^{iv}	1.952(2)	O2–Te1 ^x	2.1185(7)
Ti1–O1 ^v	1.952(2)	O1–Te1 ^{xi}	1.884(2)
Ti1–O1 ^{vi}	1.952(2)	O1–Ti1 ^{xii}	1.952(2)
O1 ⁱ -Te1-O1 ⁱⁱ	101.79(16)	O1v-Ti1-O1vii	91.81(9)
O1 ⁱ -Te1-O2	86.02(13)	O1 ^{vi} –Ti1–O1 ^{vii}	88.19(9)
O1 ⁱⁱ –Te1–O2	79.99(8)	O1 ⁱ -Ti1-O1 ^{vi}	91.81(9)
O1 ⁱ –Te1–O2 ⁱⁱⁱ	79.99(8)	O1 ^{iv} -Ti1-O1 ^{viii}	91.81(9)
O1 ⁱⁱ –Te1–O2 ⁱⁱⁱ	86.02(13)	O1v-Ti1-O1viii	88.19(9)
O2-Te1-O2 ⁱⁱⁱ	157.76(13)	O1vi–Ti1–O1viii	91.81(9)
O1 ^{iv} -Ti1-O1 ^v	180.0(2)	O1i–Ti1–O1 ^{viii}	88.19(9)
$O1^{iv}$ -Ti1-O1 vi	91.81(9)	O1 ^{vii} –Ti1–O1 ^{viii}	180.0(2)
O1v-Ti1-O1vi	88.19(9)	Te1 ^{ix} -O2-Te1	116.86(6)
O1 ^{iv} -Ti1-O1 ⁱ	88.19(9)	Te1 ^{ix} -O2-Te1 ^x	116.86(6)
O1v-Ti1-O1i	91.81(9)	Te1–O2–Te1 ^x	116.86(6)
O1vi-Ti1-O1i	180.0(2)	Te1 ^{xi} -O1-Ti1 ^{xii}	138.28(13)
O1 ^{iv} -Ti1-O1 ^{vii}	88.19(9)		

Symmetry codes: (i) y-1/2, -z+1/2, -x; (ii) -y+1/2, z, -x; (iii) -x, -y+1/2, z; (iv) x, -y+1/2, z-1/2; (v) -x, y-1/2, -z+1/2; (vi) -y+1/2, z-1/2, x; (vii) -z+1/2, -x, y-1/2; (viii) z-1/2, x, -y+1/2; (ix) y, z, x; (x) z, x, y; (xi) -z, -x+1/2, y; (xii) -x, y+1/2, -z+1/2.

Table S2 Measured values for the refractive indices of TiTe₃O₈ at different wavelengths.

λ (nm)	n
546.075	2.382467
587.562	2.359446
643.847	2.336531
706.519	2.318121
852.11	2.291467
1013.98	2.274489
1529.58	2.252335
2325.42	2.231389