Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

Tailoring self-assembling abilities in functional hybrid nanomaterials: from rod-like to disk-like clustomesogens based on a luminescent $\{Mo_6Br_8\}^{4+}$ inorganic cluster core.

Aurore Gandubert, Maria Amela-Cortes, Susanta Kumar Nayak, Cristian Vicent, Cristelle Mériadec, Franck Artzner, Stéphane Cordier, Yann Molard*

yann.molard@univ-rennes1.fr

Scheme S1. Synthesis of HLn carboxylic acid	2
Synthesis of compound 1 _{Cn}	2
Synthesis of compound 2 _{Cn}	2
Synthesis of compound HLn	3
Figure S1: ¹ H NMR (400MHz) spectra of a) LC3 and b) HL3 in CD ₂ Cl ₂	4
Figure S2: ¹ H NMR (400MHz) spectra of a) LC6 and b) HL6 in CD ₂ Cl ₂	4
Figure S3: ¹ H NMR (400MHz) spectra of a) LC9 and b) HL9 in CD ₂ Cl ₂	4
Figure S4: ESI mass spectra of CH ₂ Cl ₂ :CH ₃ OH (1:1) solutions of a) LC3, b) LC6 and c) LC9	5
Table S1: Interpretation of mass spectrometry measurements	6
Figure S5 : DSC Thermogram of compound HL3 obtained at 10K.min ⁻¹	6
Figure S6 : DSC Thermogram of compound LC3 obtained at 10K.min ⁻¹	7
Figure S7 : DSC Thermogram of compound HL6 acid obtained at 10K.min ⁻¹	7
Figure S8: DSC Thermogram of compound LC6 obtained at 10K.min ⁻¹	8
Figure S9 : DSC Thermogram of compound HL9 acid obtained at 10K.min ⁻¹	8
Figure S11: Polarized optical micrographs	9
Table S2: . Phase behavior, transition temperatures and melting enthalpies of HLn taken from the 2nd heating-cooling cycl at 10 K.min ⁻¹	e 9
Figure S12: Polarized optical micrographs of LC9 obtained at 104°C on cooling at 1 K. min-1 from the isotropic state Magnification x 200.). 0
Figure S13: Polarized optical micrographs of LC6 obtained at 135°C on cooling at 1 K. min-1 from the isotropic state Magnification x 200.). 0
Figure S14: Polarized optical micrographs obtained at 98°C on very slow cooling from the isotropic state for LC3 a) and c magnification *100 (different areas of the sample, b) magnification by 200 of micrograph presented in a)) 1
Figure S15: Small angle x-ray diffraction patterns obtained for LC3 at a) 40°C, b) 80°C and c) 110°C12	2
Figure S16: Small angle x-ray diffraction patterns obtained for LC6 at a) 40°C, b) 80°C and c) 110°C12	2
Figure S17: Small angle x-ray diffraction patterns obtained for LC9 at a) 100°C, b) 80°C and c) 20°C12	2
Figure S18: Emission decay profiles in solution of LC3 (black), LC6(blue) and LC9 (red)12	3
Figure S19: Emission decay profiles in the glassy state of LC3 (black), LC6(blue) and LC9 (red)12	3
Figure S20: Temperature dependent luminescence spectra of a) LC3, b) LC6 and c) LC914	4
Figure S21: Emission intensity vs T for LC3 (triangle), LC6 (disk) and LC9 (square)14	4

Scheme S1. Synthesis of HLn carboxylic acid

Synthesis of compound 1_{Cn}

To a solution of 4-hydroxybiphenyl-4-carbonitrile (42 mmol, 1 eq) with K_2CO_3 (2 eq) in butan-2-one (125 ml) was added 1, n-dibromoalcane (3 eq). The mixture was stirred under reflux overnight. After filtration, washing with CH₂Cl₂ and evaporation of the solvent, the product was purified by silica gel column chromatography (CH₂Cl₂/pentane 6:4). The product was dried at 70°C under vacuum to obtain compound $\mathbf{1}_n$ as white crystalline solid (yield: 70%).

1C3: ^{*1*}*H NMR* (400 *MHz*, *CDCl*₃,δ): 2.35 (q, J=5.9 Hz, -*CH*₂-, 2H), 3.63 (t, J=6.3 Hz, -*CH*₂-Br, 2H), 4.17 (t, J=5.7 Hz, -*CH*₂-O, 2H), 7.01 (d, J=7.8 Hz, -CH_{ar}, 2H), 7.53 (d, J=7.6 Hz, -CH_{ar}, 2H), 7.66 (m, -CH_{ar}, 4H). ^{*13*}*C NMR* (75 *MHz*, *CDCl*₃, δ): 29.85 (-*CH*₂-), 32.22 (-*CH*₂-Br), 65.41 (-*CH*₂-O), 110.14 (*C*_{ar}/-CN), 115.08 (-*CH*_{ar}-2, CO, 2C), 119.03 (-*CN*), 127.08 (-*CH*_{ar}/, 2C), 128.36 (-*CH*_{ar}2, 2C), 131.72 (-*C*_{qu} *ar*/), 132.53 (-*CH*_{ar}/-C-CN, 2C), 145.11 (-*C*_{qu} *ar*), 159.27 (-*C*_{ar}2-O).

1c6: ^{*I*}*H NMR* (400 *MHz*, *CDCl*₃, δ): 1.53 (m, -(*CH*₂)₂-, 4H), 1.87 (m, -*CH*₂-CH₂-X, 4H), 3.43 (t, J=6.7 Hz, -*CH*₂-Br, 2H), 4.02 (t, J=6.3 Hz, -*CH*₂-O, 2H), 6.98 (d, J=7.8 Hz, -*CH*_{ar2}, 2H), 7.52 (d, J=7.8 Hz, -*CH*_{ar2}, 2H), 7.66 (m, -*CH*_{ar1}, 4H). ¹³*C NMR* (75 *MHz*, *CDCl*₃, δ): 25.23, 27.85, 28.99, 32.60 (-*CH*₂-, 4C), 33.73 (-*CH*₂-Br), 67.83 (-*CH*₂-O), 110.00 (-*C*_{ar1}-CN), 115.02 (-*CH*_{ar2}-CO, 2C), 119.04 (-*CN*), 127.01 (-*CH*_{ar1}, 2C), 128.27 (-*CH*_{ar2}, 2C), 131.28 (-*C*_{qu ar1}), 132.50 (-*CH*_{ar1}-C-CN, 2C), 145.17 (-*C*_{qu ar2}), 159.64 (-*C*_{ar2}-O).

1cy: ^{*1*}*H NMR* (400 *MHz*, *CDCl*₃, δ): 1.35-1.49 (m, -(*CH*₂)-, 10H), 1.84 (m, -*CH*₂-CH₂-X, 4H), 3.41 (t, J=6.8 Hz, -*CH*₂-Br, 2H), 4.01 (t, J=6.5 Hz, -*CH*₂-O, 2H), 6.99 (d, J=8.8 Hz, -*CH*_{ar}, 2H), 7.52 (d, J=8.8 Hz, -*CH*_{ar}, 2H), 7.66 (m, -*CH*_{ar}, 4H). ^{*13*}*C NMR* (75 *MHz*, *CDCl*₃, δ): 25.96, 28.10, 28.64, 29.16, 29.21, 29.30, 32.76 (-*CH*₂-, 7C), 33.98 (-*CH*₂-Br), 68.09 (-*CH*₂-O), 110.00 (-*C*_{ar})-CN), 115.02 (-*CH*_{ar}-CO, 2C), 119.07 (-*CN*), 127.03 (-*CH*_{ar}, 2C), 128.28 (-*CH*_{ar}, 2C), 131.28 (-*C*_{qu ar}), 132.52 (-*CH*_{ar})-CCN, 2C), 145.24 (-*C*_{qu ar}), 159.75 (-*C*_{ar}-O).

Synthesis of compound 2_{Cn}

To a solution of 1 (3.3 eq.) with K_2CO_3 (5 eq.) in butan-2-one (100 ml) was added methyl 3,4,5-trihydroxybenzoate (1.62 mmol, 1 eq.). The mixture was stirred at reflux under argon atmosphere for 2 days. After addition of H_2O (150 ml), the product was extracted with CH₂Cl₂ (4x50 ml). The organic layer was washed with H_2O (3x50 ml), dried over anhydrous MgSO₄, filtrated and solvent removed under vacuum. The product was dried at 60°C under vacuum overnight to obtain $2C_n$ as a white solid (yield: 80%).

2_{C3}: ^{*I*}*H NMR* (400 *MHz*, *CDCl*₃, δ): 2.20 (q⁵, J=6,0 Hz, -*CH*₂-, 2H), 2.28 (q⁵, J=6,0 Hz, -*CH*₂-, 4H), 3.87 (s, -*CH*₃, 3H), 4.17 (t, J=6.0, -*CH*₂-O, 4H), 4.23 (q⁴, J=6.0 Hz, -*CH*₂-O, 8H), 6.95 (m, -*CH*_{ar2}, 6H), 7.33 (s, -*CH*_{ar3}, 2H), 7.47 (m, -*CH*_{ar2}, 6H), 7.62 (m, -*CH*_{ar1}, 12H). ^{*I*3}*C NMR* (75 *MHz*, *CDCl*₃, δ): 29.21, 30.19 (-*CH*₂-, 3C), 52.22 (-*CH*₃), 64.39, 64.72, 65.58, 68.88, 69.74 (-*CH*₂-O, 6C), 108.17 (-*CH*_{ar3}, 2C), 110.17 (-*C*_{ar1}-CN, 3C), 115.01, 115.04, 115.32 (-*CH*_{ar2}-CO, 6C), 118.94, 118.98 (-*CN*, 3C), 125.33 (-*C*_{ar3}-COOMe), 126.94, 127.02 (-*CH*_{ar1}-C-Ar₂, 6C), 128.25, 128.32 (-*CH*_{ar2}-C-Ar₁, 6C), 131.37, 131.59 (-*C*_{ar2}-Ar₁, 3C), 132.54 (-*CH*_{ar1}-C-CN, 6C), 141.68 (-*C*_{ar3}-O'),

144.95, 145.03 (- C_{ar1} -Ar₂, 3C), 152.47 (- C_{ar3} -O, 2C), 159.37, 159.60 (- C_{ar2} -O, 3C), 166.57 (-COO-Me). ESI-MS found: [M+Na]⁺ = 912.3255 a.m.u (requires m/z = 912.32554). Elemental analysis: found: C, 75.28; H, 5.30; N, 4.65 %. C₅₆H₄₇N₃O₈, 0.2H₂O requires: C, 75.27; H, 5.35; N, 4.70 %.

2_{C6}: ^{*I*}*H NMR* (300 *MHz*, *CDCl*₃, δ): 1.58 (m, -*CH*₂-, 12H), 1.85 (m, -*CH*₂-CH₂-O, 12H), 3.90 (s, -*CH*₃, 3H), 4.02 (m, -*CH*₂-O, 12H), 6.97 (m, -*CH*_{ar2}, 6H), 7.29 (s, -*CH*_{ar3}, 2H), 7.50 (m, -*CH*_{ar2}, 6H), 7.64 (m, -*CH*_{ar1}, 12H). ^{*1*3}*C NMR* (100 *MHz*, *CDCl*₃, δ): 25.79, 25.84, 25.88, 29.16, 29.19, 29.23, 30.19 (-*CH*₂-, 12C), 52.13 (-*CH*₃), 67.92, 68.00, 68.94 (-*CH*₂-O, 5C), 73.21 (-*C'H*₂-O-Ar₃), 107.98 (-*CH*_{ar3}, 2C), 110.04 (-*C*_{ar1}-CN, 3C), 114.99, 115.02 (-*CH*_{ar2}-CO, 6C), 119.00, 119.03, (-*CN*, 3C), 124.82 (-*C*_{ar3}-COOMe), 126.96, 127.00 (-*CH*_{ar1}-C-Ar₂, 6C), 128.25, 128.27 (-*CH*_{ar2}-C-Ar₁, 6C), 131.23, 131.52 (-*C*_{ar2}-Ar₁, 3C), 132.52 (-*CH*_{ar1}-C-CN, 6C), 142.15 (-*C*_{ar3}-O'), 145.09, 145.15 (-*C*_{ar1}-Ar₂, 3C), 152.71 (-*C*_{ar3}-O, 2C), 159.67 (-*C*_{ar2}-O, 3C), 166.80 (-*COO*-Me). ESI-MS found: [M+Na]⁺ = 1038.4664 a.m.u (requires m/z = 1038.46639). Elemental analysis: found: C, 76.03; H, 6.23; N, 4.04 %. C₆₅H₆₅N₃O₈, 0.5H₂O requires: C, 76.15; H, 6.49; N, 4.10 %.

2c9: ^{*I*}*H NMR* (400 *MHz*, *CD*₂*Cl*₂, δ): 1.35-1.55 (m, -*CH*₂-, 30H), 1.81 (m, -*CH*₂-CH₂-O, 12H), 3.87 (s, -*CH*₃, 3H), 4.00 (m, -*CH*₂-O, 12H), 6.98 (m, -*CH*_{ar2}, 6H), 7.27 (s, -*CH*_{ar3}, 2H), 7.53 (m, -*CH*_{ar2}, 6H), 7.66 (m, -*CH*_{ar1}, 12H). ^{*I*3}*C NMR* (100 *MHz*, *CD*₂*Cl*₂, δ): 26.56, 26.60, 29.77, 29.80, 29.87, 29.89, 29.98, 30.03, 30.08, 30.17, 30.88 (-(*CH*₂)₇-, 21C), 52.50 (-*CH*₃), 68.71, 69.61 (-*CH*₂-O, 5C), 73.91 (-*C'H*₂-O-Car3), 108.17 (-*CH*_{ar3}, 2C), 110.58, (-*C*_{ar1}-CN, 3C), 115.50, 115.54 (-*CH*_{ar2}-CO, 6C), 119.54, 119.60 (-*CN*, 3C), 125.39 (-*C*_{ar3}-COOMe), 127.46, 127.47 (-*CH*_{ar1}-C-Ar₂, 6C), 128.80 (-*CH*_{ar2}-C-Ar₁, 6C), 131.62 (-*C*_{ar2}-Ar₁, 3C), 133.09 (-*CH*_{ar1}-C-CN, 6C), 142.71 (-*C*_{ar3}-O'), 145.56, 145.60 (-*C*_{ar1}-Ar₂, 3C), 153.42 (-*C*_{ar3}-O, 2C), 160.42 (-*C*_{ar2}-O, 3C) , 167.18 (-*COO*-Me). ESI-MS found: [M+Na]⁺ = 1164.6074 a.m.u (requires m/z = 1164.60724). Elemental analysis: found: C, 77.44; H, 7.24; N, 3.69%. C₇₄H₈₃N₃O₈, 0.3H₂O requires: C, 77.43; H, 7.34; N, 3.66 %.

Synthesis of compound HLn

To a solution of $2C_n$ (1.32 mmol, 1 eq) in 100 ml of THF/EtOH (1:1) was added a solution of KOH (2.5 eq) in water (1 ml). The mixture was stirred under reflux for 4 h. Then, the solvent was removed under vacuum. Water and THF (1:1) was then added in order to dissolve the carboxylate salt. Concentrated HCl was added dropwise until pH = 1 and the solution was stirred for 1h. Then, the product was extracted with dichloromethane (3*40ml) and washed with water (3*50ml). The organic solution was dried on MgSO₄ and solvent was removed. The product was dried under vacuum to obtain compound 3 as a white solid (yield : 85%).

HL3: ^{*1*}*H NMR* (400 *MHz*, *CD*₂*Cl*₂, δ): 2.19 (-*CH*'₂-, 2H), 2.29 (m, -*CH*₂-, 4H), 4.22 (m, -*CH*₂-O, 12H), 6.97 (m, -*CH*_{ar2}, 6H), 7.33 (s, -*CH*_{ar3}, 2H), 7.50 (m, -*CH*_{ar2}, 6H), 7.63 (m, -*CH*_{ar1}, 12H). ^{*1*3}*C NMR* (75 *MHz*, *CD*₂*Cl*₂, δ): 29.82 (-*CH*₂-, 2C), 30.79 (-*C'H*₂-), 65.09, 65.37, 66.27, 70.43 (-*CH*₂-O, 6C), 109.21 (-*CH*_{ar3}, 2C), 110.70 (-*C*_{ar1}-CN, 3C), 115.57 (-*CH*_{ar2}-CO, 6C), 119.49 (-*CN*, 3C), 124.67 (-*C*_{ar3}-COOH), 127.44, 127.51, 127.60 (-*CH*_{ar1}-C-Ar₂, 6C), 128.81, 128.86 (-*CH*_{ar2}-C-Ar₁, 6C), 131.83 (-*C*_{ar2}-Ar₁, 3C), 132.01, 133.12 (-*CH*_{ar1}-C-CN, 6C), 143.20 (-*C*_{ar3}-O'), 145.43, 145.49 (-*C*_{ar1}-Ar₂, 3C), 153.22 (-*C*_{ar3}-O, 2C), 160.08, 160.25 (-*C*_{ar2}-O, 3C), 171.21 (-*COOH*). ESI-MS found: [M-H]⁻ = 874.3161 a.m.u (requires m/z = 874.31339). Elemental analysis: found: C, 74.68; H, 5.21; N, 4.54%. C₅₅H₄₅N₃O₈, 0.5H₂O requires: C, 75.64; H, 5.24; N, 4.75 %.

HL6: ¹*H* NMR (400 MHz, CD_2Cl_2 , δ): 1.57 (m, -(CH_2)₂-, 12H), 1.83 (m, - CH_2 -CH₂-O, 12H), 4.02 (m, - CH_2 -O, 12H), 6.96 (m, - CH_{ar2} , 6H), 7.32 (s, - CH_{ar3} , 2H), 7.52 (m, - CH_{ar2} , 6H), 7.65 (m, - CH_{ar1} , 12H). ¹³*C* NMR (100 MHz, CD_2Cl_2 , δ): 26.38, 26.48, 29.79, 29.85, 30.85 (- CH_2 -, 12C), 66.25, 68.65, 69.67 (- CH_2 -O, 5C), 73.91 (- $C'H_2$ -O-Ar₃), 109.68 (- CH_{ar3} , 2C), 110.68 (- C_{ar1} -CN, 3C), 115.58, 115.61 (- CH_{ar2} -CO, 6C), 119.56 (-CN, 3C), 124.27 (- C_{ar3} -COOH), 127.51, 127.53 (- CH_{ar1} -C-Ar₂, 6C), 128.86 (- CH_{ar2} -C-Ar₁, 6C), 131.75, 131.78 (- C_{ar2} -Ar₁, 3C), 133.14 (- CH_{ar1} -C-CN, 6C), 143.59 (- C_{ar3} -O'), 145.62, 145.66 (- C_{ar1} -Ar₂, 3C), 153.51 (- C_{ar3} -O, 2C), 160.43 (- C_{ar2} -O, 3C), 170.72 (-COOH). ESI-MS found: [M+H]⁺ = 1000.4543 a.m.u (requires m/z = 1000.45424). Elemental analysis: found: C, 76.11; H, 6.29; N, 4.06%. C₆₄H₆₃N₃O₈, 0.4H₂O requires: C, 76.15; H, 6.37; N, 4.16 %.

HL9: ^{*I*}*H NMR* (400 *MHz*, *CD*₂*Cl*₂, δ): 1.35-1.55 (m, -(*CH*₂)₂-, 30H), 1.80 (m, -*CH*₂-CH₂-O, 12H), 4.00 (m, -*CH*₂-O, 12H), 6.96 (m, -*CH*_{ar2}, 6H), 7.30 (s, -*CH*_{ar3}, 2H), 7.52 (m, -*CH*_{ar2}, 6H), 7.66 (m, -*CH*_{ar1}, 12H). ^{*I*3}*C NMR* (100 *MHz*, *CD*₂*Cl*₂, δ): 26.58, 26.63, 29.81, 29.84, 29.88, 29.90, 30.00, 30.04, 30.09, 30.19, 30.92 (-*CH*₂-, 21C), 68.77, 69.73 (-*CH*₂-O, 5C), 74.01 (-*C'H*₂-O-Ar₃), 108.86 (-*CH*_{ar3}, 2C), 110.63 (-*Ca*_{r1}-CN, 3C), 115.57 (-*CH*_{ar2}-CO, 6C), 119.56 (-*CN*, 3C), 124.11 (-*C*_{ar3}-COOH), 127.53 (-*CH*_{ar1}-C-Ar₂, 6C), 128.84 (-*CH*_{ar2}-C-Ar₁, 6C), 131.71 (-*C*_{ar2}-Ar₁, 3C), 133.13 (-*CH*_{ar1}-C-CN, 6C), 143.49 (-*C*_{ar3}-C), 145.67 (-*C*_{ar1}-Ar₂, 3C), 153.51 (-*C*_{ar3}-O, 2C), 160.45 (-*C*_{ar2}-O, 3C), 169.72 (-*COOH*). ESI-MS found: [M+H]⁺ = 1126.5959 a.m.u (requires m/z = 1126.59509). Elemental analysis: found: C, 77.37; H, 7.23; N, 3.68%. C₇₃H₈₁N₃O₈ requires: C, 77.39; H, 7.25; N, 3.71 %.

Figure S1: ¹H NMR (400MHz) spectra of a) LC3 and b) HL3 in CD₂Cl₂

Figure S2: ¹H NMR (400MHz) spectra of a) LC6 and b) HL6 in CD₂Cl₂

Figure S3: ¹H NMR (400MHz) spectra of a) LC9 and b) HL9 in CD₂Cl₂

Figure S4: ESI mass spectra of CH₂Cl₂:CH₃OH (1:1) solutions of a) LC3, b) LC6 and c) LC9 recorded at Uc =150 V. A comparison of the experimental and simulated isotopic pattern for the pseudomolecular $[LCn - 2nBu_4N]^{2-}$ dianions is also given as insets in the corresponding spectrum.

We also evidenced the presence of other Mo₆-based species in the ESI mass spectra that were assigned to clusters in which one Ln ligand has been replaced by different halide (X = Cl or Br) ligands. An inspection of the ¹H NMR analysis, where the structural integrity of LCn samples was unambiguously confirmed, indicates that these species correspond to gas-phase rearrangements during the ionization process, most likely due to the high Uc values (Uc = 150 V) used to maximize ion abundances of the identified ions.

	m/z	Exp
Sample LC9		
[LC9 - 2nBu ₄ N] ²⁻	3989,7	3989.7
[LC9 - (L9 + Br) - 2nBu4N] ²⁻	3465,3	3465.3
$[LC9 - (2L9 + 2Br) - 2nBu_4N]^{2}$	2941,50	2940
Sample LC6		
[LC6 - 2nBu4N] ²⁻	3611.3	3611.3
[LC9 - (L9 + Br) - 2nBu ₄ N] ²⁻	3149,5	3149.5
[LC6 - (L9 + Cl) - 2nBu ₄ N] ²⁻	3128.1	3128.1
Sample LC3		
[LC3 - 2nBu ₄ N] ²⁻	3232,3	3232.7
$[LC3 - (L9 + Br) - 2nBu_4N]^{2-}$	2835,6	2835,6
$[LC3 - (2L9 + 2Br) - 2nBu_4N]^{2}$	2439,3	2439,3

Table S1: Interpretation of mass spectrometry measurements

Figure S5 : DSC Thermogram of compound HL3 obtained at 10K.min⁻¹

Figure S6 : DSC Thermogram of compound LC3 obtained at 10K.min⁻¹

Figure S7 : DSC Thermogram of compound HL6 acid obtained at 10K.min⁻¹

Figure S8: DSC Thermogram of compound LC6 obtained at 10K.min⁻¹

Figure S9 : DSC Thermogram of compound HL9 acid obtained at 10K.min⁻¹

Figure S10 : DSC Thermogram of compound LC9 obtained at 10K.min-1

Figure S11: Polarized optical micrographs obtained on cooling at 10 K. min⁻¹ from the isotropic state of a) HL3 at 110°C (schlieren texture), b) HL6 at 165°C (marbled texture), c) HL9 at 80°C (fan shaped with focal conic) and d) HL9 at 117°C (schlieren texture)

Table S2: . Phase behavior, transition temperatures and melting enthalpies of HLn taken from the 2nd heating-cooling cycle at 10 K.min⁻¹.

compound	LC	T [°C]	∆Cp ^[a]	$\Delta H^{[b]}$	$\Delta H/Nb_{CB}^{[b]}$
HL9	$\begin{array}{l} g \rightarrow C \\ C \rightarrow C' \\ C' \rightarrow N \\ I \rightarrow N \\ N \rightarrow SmA \\ SmA \rightarrow g \end{array}$	33.4 82.2 131 145 131 86.6 30.3	0.28 - - - - 0.31	- -35.15 78.5ª - -6.15 -7.34 -	- -11.7 26.2 - - -2.1 -2.5 -
HL6	$\begin{array}{c} C \rightarrow I \\ I \rightarrow N \end{array}$	176 [162]	-	75.8 [6.2]	25.3 [2.1]
HL3	$\begin{array}{l} g \rightarrow N \\ N \rightarrow I \end{array}$	57.5 134.5	0.3 -	- 2.6	- 0.87

[a] in kJ.mol⁻¹.K⁻¹; [b] in kJ.mol⁻¹; g: glassy state; SmA: smectic A; N: nematic;; l:isotropic; C: crystal

Figure S12: Polarized optical micrographs of LC9 obtained at 104°C on cooling at 1 K. min-1 from the isotropic state. Magnification x 200.

Figure S13: Polarized optical micrographs of LC6 obtained at 135°C on cooling at 1 K. min-1 from the isotropic state. Magnification x 200.

Figure S14: Polarized optical micrographs obtained at 98°C on very slow cooling from the isotropic state for LC3 a) and c) magnification *100 (different areas of the sample, b) magnification by 200 of micrograph presented in a).

Annealing time: 3 weeks. Although the I to LC phase transition temperature is around 120°C, only a homeotropic alignement was observed down to 100°C.

Figure S15: Small angle x-ray diffraction patterns obtained for LC3 at a) 40°C, b) 80°C and c) 110°C

Figure S16: Small angle x-ray diffraction patterns obtained for LC6 at a) 40°C, b) 80°C and c) 110°C

Figure S17: Small angle x-ray diffraction patterns obtained for LC9 at a) 100°C, b) 80°C and c) 20°C

Figure S18: Emission decay profiles in solution of LC3 (black), LC6(blue) and LC9 (red)

Figure S19: Emission decay profiles in the glassy state of LC3 (black), LC6(blue) and LC9 (red)

Figure S20: Temperature dependent luminescence spectra of a) LC3, b) LC6 and c) LC9

Figure S21: Emission intensity vs T for LC3 (triangle), LC6 (disk) and LC9 (square)