Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supporting information for

Designing molecular rectifiers and spin valves using metallocene-functionalized undecanethiolates: one transition metal atom matters

Guang-Ping Zhang,*^{*a,b*} Yan-Qi Mu,^{*a*} Ming-Zhi Wei,^{*a,c*} Shan Wang,^{*a*} Hui Huang,^{*d*}

Gui-Chao Hu,^{*a,b*} Zong-Liang Li,^{*a*} and Chuan-Kui Wang^{**a*}

^aShandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China ^bInstitute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, China ^cSchool of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China ^dSchool of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong

Academy of Sciences), Jinan 250353, China

*Authors to whom correspondence should be addressed.

E-mail addresses: <u>zhangguangping@sdnu.edu.cn</u> (G.-P. Zhang), <u>ckwang@sdnu.edu.cn</u> (C.-K. Wang).

Figure S1. Spin-resolved rectification ratios of the spin-up current-voltage curve (red line) and spin-down current-voltage curve (blue line) for (a) $SC_{11}MnCp2$ junction and (b) $SC_{11}CoCp2$ junction.

Figure S2. Spatial distributions of frontier MPSH molecular orbitals at zero bias voltage for $SC_{11}CrCp2$ junction (the isovalue is 0.002).

Figure S3. (a) Spin-up and (b) spin-down electronic transmission spectra in logarithmic scale at different bias voltages for $SC_{11}CrCp2$ junction. The dashed lines indicate the chemical potentials of the electrodes, and the energy range between them is the bias window.

Figure S4. Spatial distributions of frontier MPSH molecular orbitals at zero bias voltage for $SC_{11}MnCp2$ junction (the isovalue is 0.002).

Figure S5. (a) Spin-up and (b) spin-down electronic transmission spectra in logarithmic scale at different bias voltages for $SC_{11}MnCp2$ junction. The dashed lines indicate the chemical potentials of the electrodes, and the energy range between them is the bias window.

Figure S6. Spatial distributions of frontier MPSH molecular orbitals at zero bias voltage for $SC_{11}CoCp2$ junction (the isovalue is 0.002).

Figure S7. (a) Spin-up and (b) spin-down electronic transmission spectra in logarithmic scale at different bias voltages for $SC_{11}CoCp2$ junction. The dashed lines indicate the chemical potentials of the electrodes, and the energy range between them is the bias window.

Figure S8. Spatial distributions of frontier MPSH molecular orbitals at zero bias voltage for SC₁₁NiCp2 junction (the isovalue is 0.002).

Figure S9. (a) Spin-up and (b) spin-down electronic transmission spectra in logarithmic scale at different bias voltages for $SC_{11}NiCp2$ junction. The dashed lines indicate the chemical potentials of the electrodes, and the energy range between them is the bias window.