Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Highly efficient green organic light emitting diodes with phenanthroimidazole-based thermally activated delayed

fluorescence emitters

Zhi Huang, Songpo Xiang, Qing Zhang, Xialei Lv, Shaofeng Ye, Runda Guo, Lei Wang* Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China

*Email: wanglei@mail.hust.edu.cn

Fig. S1. DSC curves of PPZTPI and PPZPPI.

Fig. S2. Single-crystal structure of **PPZTPI**: (a) Distance of intermolecular π - π interaction; (b) Distance of intermolecular C-H··· π interaction.

CCDC	1577557
Empirical formula	$C_{49}H_{38}N_4$
Formula weight	682.83
Т, К	160(80)
Crystal system	triclinic
Space group	P-1
a/Å	9.2776(4)
b/Å	11.1340(7)
c/Å	18.0446(4)
α/°	95.121(3)
β/°	96.138(3)
γ/°	103.446(4)
Volume/Å ³	1789.87(15)
Ζ	2
$\rho_{calc}g/cm^3$	1.267
µ/mm ⁻¹	0.572
F(000)	720.0
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	4.96 to 147.84
Index ranges	$-8 \le h \le 11, -13 \le k \le 10, -22 \le l \le 18$
Reflections collected	18583
Independent reflections	7007 [$R_{int} = 0.0631$, $R_{sigma} = 0.0665$]
Data/restraints/parameters	7007/0/481
Goodness-of-fit on F ²	1.100
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0719$, $wR_2 = 0.2192$
Final R indexes [all data]	$R_1 = 0.0827, wR_2 = 0.2288$
Largest diff. peak/hole / e Å ⁻³	0.84/-0.61

Table S1. Crystal data and structure refinement for PPZTPI

Fig. S3. Solvatochromic of PPZTPI and PPZPPI in different solvents.

Fig. S4. PL spectra of PPZTPI and PPZPPI doped in CBP films.

Fig. S5. Temperature-dependence of the transient PL characteristics for **PPZTPI** and **PPZPPI** doped in CBP films (5 wt%).

	PPZTPI	PPZPPI
Φ	0.731	0.990
$arPsi_{ m p}$	0.364	0.577
$arPsi_{ m d}$	0.367	0.413
$\tau_p(ns)$	3.26	3.0
$\tau_d(\mu s)$	126.5	118.0
k _p (s ⁻¹)	1.12*108	1.92*108
$k_{d}(s^{-1})$	5.78*10 ³	8.39*10 ³
$k_{ISC}(s^{-1})$	1.54*108	1.39*108
k _{RISC} (s ⁻¹)	4.22*10 ³	8.31*10 ³

Table S2. The detail kinetic parameters

To further compare the TADF characteristics of both compounds, the main kinetic parameters of both compounds were calculated according to the literature^{1, 2}:

$$k_{p} = \Phi_{p}/\tau_{p}$$

$$\Phi = k_{p}/(k_{p} + k_{IC})$$

$$\Phi_{p} = k_{p}/(k_{p} + k_{IC} + k_{ISC})$$

$$\Phi_{IC} = k_{IC}/(k_{p} + k_{IC} + k_{ISC})$$

$$\Phi_{ISC} = 1 - \Phi_{p} - \Phi_{ISC} = k_{ISC}/(k_{p} + k_{IC} + k_{ISC})$$

$$k_{d} = \frac{\Phi_{d}}{\Phi_{ISC}\tau_{d}}$$

$$k_{RISC} = \frac{k_{p}k_{d}\Phi_{d}}{k_{ISC}\Phi_{p}}$$

where Φ is absolute photoluminescence quantum yield, Φ_p and Φ_d are the prompt and delayed fluorescence quantum yields, τ_p and τ_d are the prompt and delayed fluorescence decay fluorescence decay rate constants, Φ_{IC} and Φ_{ISC} are the internal conversion and intersystem crossing quantum yield, k_{IC} and k_{ISC} are the internal conversion and intersystem crossing decay rate constants, k_{RISC} is the rate constants for the reverse intersystem crossing from T₁ to S₁.

	3%	5%	10%	20%
PPZTPI	16.78%	20.52%	15.44%	-
PPZPPI	16.97%	21.06%	17.37%	12.09%

 Table S3. The maximum EQE of PPZTPI and PPZPPI as dopants at different concentrations.

Fig. S6. EL spectra of PPZTPI (a) and PPZPPI (b) at different concentrations.

Fig. S7. Current density-voltage characteristics of hole-only and electron-only devices with different concentrations for **PPZTPI** (a) and **PPZPPI** (b).

emitter	EL _{max} (nm)	$\Delta E_{ST} (eV)$	EQE	Ref.
PPZTPI	528	0.11	20.52 %	This work
PPZPPI	528	0.12	21.06 %	This work
4CzIPN	513	0.08	19.3 %	3
TXO-PhCz	520	0.09	21.5 %	4
ACRDSO2	534	0.058	19.2 %	5
PHzBCO	520	0.006	19.6 %	6
PXZ-DPS	507	0.08	17.5 %	7
Px2BP	539	0.03	10.7 %	8
DTCBPy	514	0.04	27.2 %	9
PXZPhPM	528	0.03	24.6 %	10
OSTFCN	530	0.09	20.4 %	11
4CzCNPy	524	0.07	10.4 %	12
DCZ-TTR	512	0.03	20.1 %	13
AI-Cz	510	0.06	23.2 %	14
AI-TBCz	540	0.03	21.1 %	14
mPTBC	516	0.006	18.1 %	15

Table S4. Recently reported OLEDs based on green TADF materials

References

- 1 Q. Zhang, H. Kuwabara, W. J. Potscavage, Jr., S. Huang, Y. Hatae, T. Shibata and C. Adachi, J. Am. Chem. Soc., 2014, **136**, 18070-18081.
- 2 K. Masui, H. Nakanotani and C. Adachi, Org. Electron., 2013, 14, 2721-2726.
- 3 H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi, *Nature*, 2012, 492, 234-238.
- 4 H. Wang, L. Xie, Q. Peng, L. Meng, Y. Wang, Y. Yi and P. Wang, *Adv. Mater.*, 2014, 26, 5198-5204.
- 5 G. Xie, X. Li, D. Chen, Z. Wang, X. Cai, D. Chen, Y. Li, K. Liu, Y. Cao and S. J. Su, *Adv. Mater.*, 2016, 28, 181-187.
- 6 J. X. Chen, W. Liu, C. J. Zheng, K. Wang, K. Liang, Y. Z. Shi, X. M. Ou and X. H. Zhang, ACS Appl. Mater. Interfaces, 2017, 9, 8848-8854.
- 7 Q. S. Zhang, B. Li, S. P. Huang, H. Nomura, H. Tanaka and C. Adachi, *Nat. Photonics*, 2014, **8**, 326-332.
- 8 S. Y. Lee, T. Yasuda, Y. S. Yang, Q. Zhang and C. Adachi, *Angew. Chem. Int. Ed.*, 2014, **53**, 6402-6406.
- 9 P. Rajamalli, N. Senthilkumar, P. Gandeepan, P. Y. Huang, M. J. Huang, C. Z. Ren-Wu, C. Y. Yang, M. J. Chiu, L. K. Chu, H. W. Lin and C. H. Cheng, *J. Am. Chem. Soc.*, 2016, 138, 628-634.
- K. Wu, T. Zhang, L. Zhan, C. Zhong, S. Gong, N. Jiang, Z. H. Lu and C. Yang, *Chemistry*, 2016, 22, 10860-10866.
- 11 Y. K. Wang, S. F. Wu, Y. Yuan, S. H. Li, M. K. Fung, L. S. Liao and Z. Q. Jiang, Org. Lett.,

2017, **19**, 3155-3158.

- 12 C. Tang, T. Yang, X. D. Cao, Y. T. Tao, F. F. Wang, C. Zhong, Y. Qian, X. W. Zhang and W. Huang, *Adv. Optical Mater.*, 2015, **3**, 786-790.
- 13 K. Wang, W. Liu, C.-J. Zheng, Y.-Z. Shi, K. Liang, M. Zhang, X.-M. Ou and X.-H. Zhang, J. *Mater. Chem. C*, 2017, 5, 4797-4803.
- M. Li, Y. Liu, R. Duan, X. Wei, Y. Yi, Y. Wang and C. F. Chen, *Angew. Chem. Int. Ed.*, 2017, 56, 8818-8822.
- 15 D.-Q. Wang, M. Zhang, K. Wang, C.-J. Zheng, Y.-Z. Shi, J.-X. Chen, H. Lin, S.-L. Tao and X.-H. Zhang, *Dyes Pigments*, 2017, 143, 62-70.