Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Color-tunable luminescent hydrogels with tough mechanical strength and selfhealing ability

Daqing Yang, Yige Wang*, Zhiqiang Li, Yang Xu, Fei Cheng, Peng Li and Huanrong Li*

School of Chemical Engineering and Technology, Hebei University of Technology

GuangRong Dao 8, Hongqiao Distric, Tianjin 300130 (China)

E-mail: wangyige@hebut.edu.cn, lihuanrong@hebut.edu.cn

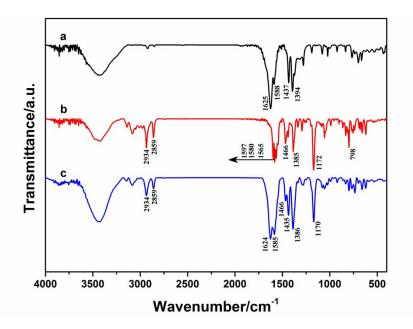


Figure S1. FT-IR spectra of Na₃[Ln(dpa)₃] (a), tpy-mim₂ (b), and Ln(dpa)₃-tpy-mim₂

(c).

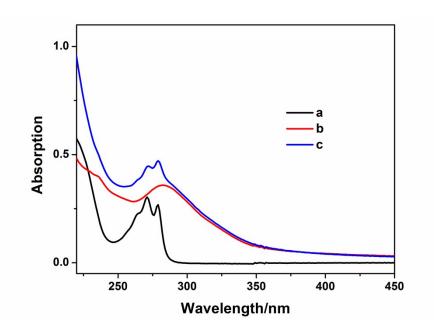


Figure S2. UV-Vis absorption spectra of $Na_3[Ln(dpa)_3]$ (a), tpy-mim₂ (b), and $Ln(dpa)_3$ -tpy-mim₂ (c).

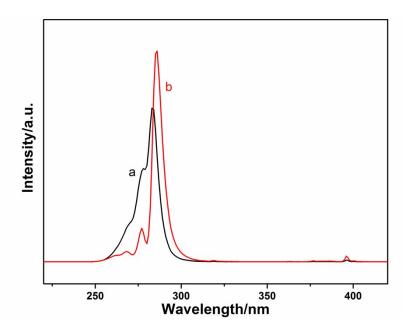


Figure S3. The excitation spectra of Na₃[Ln(dpa)₃] (a) and Ln(dpa)₃-tpy-mim₂ (b).

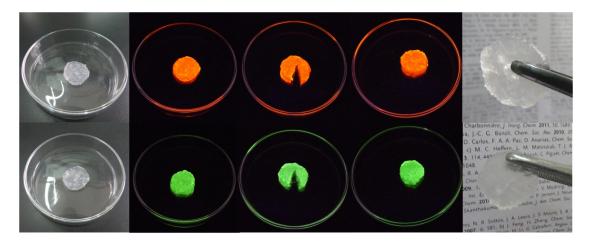
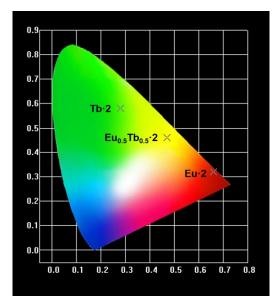



Figure S4. Pictures of Ln·1 (Ln=Eu, Tb) under 254 nm UV lamp illumination and daylight. (Red: Eu·1; Green: Tb·1).

Figure S5. Digital photo of Ln-tpy-mim₂ aqueous solution with ASAP exfoliated clay

nanosheets. Ascribe to the lack of spherical micelles, no gelation was observed.

Figure S6. CIE 1931 chromaticity diagram within the coordinates of $Ln \cdot 2$ (Ln=Eu, Tb, or Eu and Tb in molar ratio as 1:1) under 254 nm UV lamp illumination.

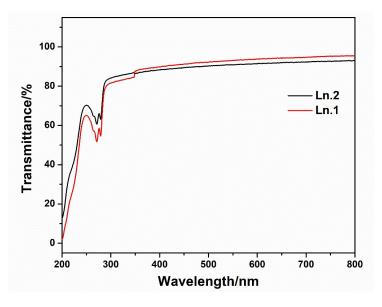
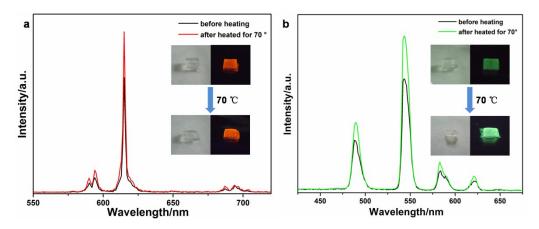
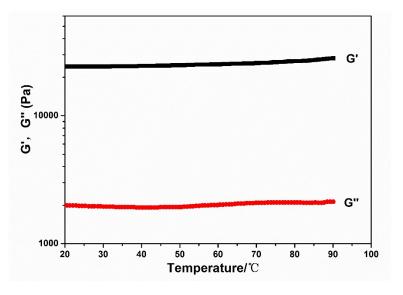




Figure S7. UV-vis transmittance spectra of PVA-containing hydrogels $Ln \cdot 2$ (black) and PVA-free analogues $Ln \cdot 1$ (red).

Figure S8. Luminescence emission spectra of hydrogels $Eu \cdot 2$ (a), $Tb \cdot 2$ (b) before heating and after heated to 70 °C for 10 min. Inset: Pictures of hydrogels under before heating and after heated to 70 °C for 10 min (under 254 nm UV lamp illumination).

Figure S9. Rheological properties of Ln·2: Frequency (ω) sweep tests at ω =6.28 rad s⁻¹ and strain (γ) = 0.5% of the supramolecular hydrogels at varying temperature from 20 °C to 90°C.

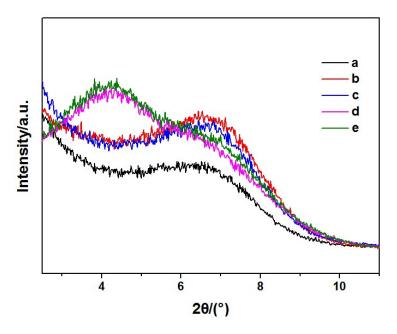


Figure S10. XRD spectra of pure clay (a); clay-ASAP (b); clay-PVA (c); Ln·1 (d);

Ln·2 (e).

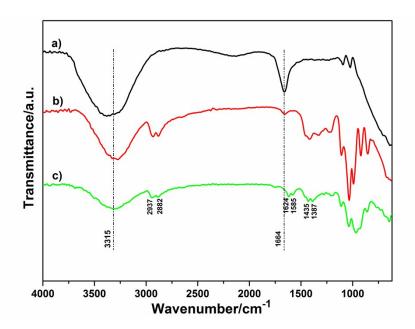


Figure S11. IR spectra of hydrogels $Ln \cdot 2$ (a) and the resultant organogels from gylcerol (b) and THF (c).