Supporting Information

Perovskite templating via bathophenanthroline additive for efficient light-emitting devices

Nur Fadilah Jamaludin,^{‡,a,b,c} Natalia Yantara,^{‡,a} Yan Fong Ng,^{a,b,c} Annalisa Bruno,^a Bevita K. Chandran,^{a,b,c} Xin Yu Chin,^a Krishnamoorthy Thirumal,^a Nripan Mathews,^{a,c} Cesare Soci,^d Subodh Mhaisalkar^{*,a,c}

^a Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, Research Techno Plaza, X-Frontier Block, Level 5, 50 Nanyang Drive, Singapore 637553

^b Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798

^c School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798

^d Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371

* Email: subodh@ntu.edu.sg

Content

Figure S1. FTIR spectra of reference and BPhen-incorporated CH ₃ NH ₃ PbBr ₃ films as well as pure BPhen powder. Due to instrument limitation, the stretching due to the C=N bond (~1550 cm ⁻¹) was observable only in the sample prepared with 10 mg mL ⁻¹ BPhen concentration. The spectra are offset to provide a clearer view of the expected contribution due to C=N bond stretching
Figure S2. Elliot fitting of absorbance curves for reference and BPhen-incorporated CH ₃ NH ₃ PbBr ₃ films4
Figure S3: Peak fitting for PL spectra of reference and BPhen-incorporated CH3NH3PbBr3 film5
Figure S4. Valence band maximum estimation obtained using PESA measurements for reference and BPhen-incorporated CH ₃ NH ₃ PbBr ₃ films
Figure S5. (a) Surface topology taken using AFM and (b) estimated surface roughness of reference and BPhen-incorporated CH ₃ NH ₃ PbBr ₃ films8
Figure S6. Current density against voltage curves for reference and BPhen-incorporated CH ₃ NH ₃ PbBr ₃ hole-only devices. The device architecture for the hole-only device consists of ITO/PEDOT: PSS/perovskite/Au
Figure S 7: Plot of luminance against time for the 0 and 0.500 mg mL ⁻¹ devices measured under constant current9
Figure S8. Absorbance-corrected PL intensity of BPhen, TPBi and PBD-incorporated CH ₃ NH ₃ PbBr ₃ films with fixed concentration of 0.500 mg mL ⁻¹ in toluene10
Figure S9. (a) Current density and luminance against voltage and (b) current efficiency against current density of BPhen, TPBi and PBD-incorporated CH ₃ NH ₃ PbBr ₃ films with fixed concentration of 0.500 mg mL ⁻¹ in toluene11
Figure S10. Molecular structure of the small molecule additives used in this work: BPhen, TPBi and PBD.
Table S1. Exciton binding energy and optical band gap energy of reference and BPhen-incorporated CH ₃ NH ₃ PbBr ₃ films obtained by Elliot's fitting of the absorbance spectra in Figure S24
Table S2. Summary of decay lifetimes of reference and BPhen-incorporated CH ₃ NH ₃ PbBr ₃ films6

Additional Results

Figure S1. FTIR spectra of reference and BPhen-incorporated CH₃NH₃PbBr₃ films as well as pure BPhen powder. Due to instrument limitation, the stretching due to the C=N bond (~1550 cm⁻¹) was observable only in the sample prepared with 10 mg mL⁻¹ BPhen concentration. The spectra are offset to provide a clearer view of the expected contribution due to C=N bond stretching.

Figure S2. Elliot fitting of absorbance curves for reference and BPhen-incorporated CH₃NH₃PbBr₃ films

Table S1. Exciton binding energy and optical band gap energy of reference and BPhen-incorporated $CH_3NH_3PbBr_3$ films obtained by Elliot's fitting of the absorbance spectra in Figure S2.

Sample	Exciton Binding Energy (E _{EX})	Band Gap (E _G)
0 mg ml ⁻¹	50 meV	2.4 eV
0.125 mg ml ⁻¹	50 meV	2.4 eV
0.250 mg ml ⁻¹	50 meV	2.4 eV
0.500 mg ml ⁻¹	50 meV	2.4 eV
0.750 mg ml ⁻¹	50 meV	2.4 eV

Figure S3: Peak fitting for PL spectra of reference and BPhen-incorporated CH₃NH₃PbBr₃ film

Figure S4. Valence band maximum estimation obtained using PESA measurements for reference and BPhenincorporated CH₃NH₃PbBr₃ films.

Table 32. Summary of decay medimes of reference and principliculous decay chain isrupts min	Table S2.	Summary	of decay lifetime	s of reference and	BPhen-incorporated	CH ₃ NH ₃ PbBr ₃ film
--	-----------	---------	-------------------	--------------------	--------------------	--

Sample	a ₁	A ₁	T ₁	a ₂	A ₂	T ₂	T _{ave}
0 mg ml ⁻¹	0.258	0.2716	2.026	0.692	0.72842	18.426	13.9721
0.125 mg ml ⁻¹	0.342	0.3548	3.112	0.622	0.64523	20.413	14.2751
0.250 mg ml ⁻¹	0.389	0.3994	2.421	0.585	0.60062	14.693	9.79176
0.500 mg ml ⁻¹	0.401	0.4199	2.016	0.554	0.5801	12.541	8.1216
0.750 mg ml ⁻¹	0.456	0.4423	2.303	0.575	0.55771	13.812	8.7217

Figure S5. (a) Surface topology taken using AFM and (b) estimated surface roughness of reference and BPhenincorporated CH₃NH₃PbBr₃ films.

Figure S6. Current density against voltage curves for reference and BPhen-incorporated CH₃NH₃PbBr₃ holeonly devices. The device architecture for the hole-only device consists of ITO/PEDOT: PSS/perovskite/Au.

Figure S7. Plot of luminance against time for the 0 and 0.500 mg mL⁻¹ devices measured under constant current

Figure S8. Absorbance-corrected PL intensity of BPhen, TPBi and PBD-incorporated CH₃NH₃PbBr₃ films with fixed concentration of 0.500 mg mL⁻¹ in toluene.

Figure S9. (a) Current density and luminance against voltage and (b) current efficiency against current density of BPhen, TPBi and PBD-incorporated $CH_3NH_3PbBr_3$ films with fixed concentration of 0.500 mg mL⁻¹ in toluene.

Figure S10. Molecular structure of the small molecule additives used in this work: BPhen, TPBi and PBD.