Supporting Information

Design and synthesis of a nonlinear optical material $BaAl_4S_7$ with a wide band gap inspired from SrB_4O_7

Dajiang Mei,^{*a} Jianqiao Jiang,^a Fei Liang,^{b,c} Shiyan Zhang,^a Yuandong Wu,^a Congting Sun,^d Dongfeng Xue,^d and Zheshuai Lin^{*b,c}

^aCollege of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China. E-mail: meidajiang718@pku.edu.cn. (D.-J. M)

^bTechnical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China E-mail: zslin@mail.ipc.ac.cn. (Z.-S. L)

^cUniversity of Chinese Academy of Sciences, Beijing 100190, China

^dState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute

of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

Contents

Experimental and calculation details.

Figure S1. The single crystals of BaAl₄S₇.

Figure S2. a) Band structure of BaAl₄S₇, b) PDOS of BaAl₄S₇.

Figure S3. Diffuse spectrum of $BaGa_4S_7$ and $LiGaS_2$: (a, b) the spectra with upper tangent; (c, d) the spectra with baseline tangent.

Figure S4. The SHG intensity of a $BaAl_4S_7$ sample compared with that of $AgGaS_2$ at 1.06 µm laser.

Table S1: Crystal Data and Structure Refinement for BaAl₄S₇.

Table S2: Selected Bond Lengths (Å) for BaAl₄S₇.

Electronic structure calculations

The calculated band structure of BaAl₄S₇ is shown in Figure S1. BaAl₄S₇ has an indirect bandgap of 3.9 eV at the Γ point, which is less than the experimental value. However, it is larger than that of the existed calculation results, which reported it possessed a band gap with 3.74 eV¹ using the HSE06 method. Figure S1 (b) displays the density of states (DOS) and partial (PDOS) of the respective species in BaAl₄S₇. Clearly, the deep part of VB lower than -20 eV is mainly composed of Ba 6s orbitals. The upper part of the VB (-15 to -10 eV) consists of Ba 5p, Al 3p and S 3s orbitals. The VB maximum is exclusively occupied by S 2p and Al 3p orbitals, which is similar to the BaAl₄Se₇. The bottom of the CB is mainly contributed from Al 3s, 3p and S 3p orbitals.

In comparison with that of the existed PDOS figure using with GGA-PBE method, it stated that the band gap is found between S-3p orbital VB and Al-3p, Al-3s orbitals CB, which is different from the above calculation result. Since the optical effects of a crystal are mainly determined by the optical transition between the electronic states close to the bandgap, it is anticipated that they are dominantly contributed from the groups constructed by Al and S, while the contribution from the orbitals of the Ba²⁺ cations is negligibly small.

Figure S1. The single crystals of $BaAl_4S_7$.

Figure S2. a) Band structure of $BaAl_4S_7$, b) PDOS of $BaAl_4S_7$

Figure S3. Diffuse spectrum of $BaGa_4S_7$ and $LiGaS_2$: (a, b) the spectrum with upper tangent; (c, d) the spectrum with baseline tangent.

Figure S4. The SHG intensity of a $BaAl_4S_7$ sample compared with that of $AgGaS_2$ at 1.06 µm laser.

	BaAl ₄ S ₇	
<i>a</i> (Å)	14.748	
<i>b</i> (Å)	6.204	
<i>c</i> (Å)	5.869	
V (Å ³)	537.0	
Space group	$Pmn2_1$ (31)	
Ζ	2	
Index ranges	-19≤h≤19	
	-6≤k≤7	
	-8≤1≤6	
theta range	3.563-28.976	
$\rho_c(g/cm^3)$	2.905	
$\mu(cm^{-1})$	53.22	
$R(F)^a$	0.04	
$R_{\rm w}(F_{\rm o}^{2})^{b}$	$R_{\rm w}(F_{\rm o}^{2})^{b}$ 0.0925	

Table S1: Crystal Data and Structure Refinement for $BaAl_4S_7$

Atoms	Distances	Atoms	Distances
Al1-S1	2.201(3)	Ba1-S4	3.398(5)
Al1-S2	2.205(3)	Ba1-S1×2	3.4202(19)
Al1-S3	2.293(3)	Ba1-S2×2	3.490(5)
A11-S3	2.300(5)	Ba1-S4	3.583(6)
Al2-S4	2.218(3)	Ba1-S2×2	3.592(5)
Al2-S2	2.222(3)	Ba1-S3×2	3.6803(15)
Al2-S1	2.234(5)	Ba1-S1×2	3.6977(18)
Al2-S3	2.301(3)		

Table S2: Selected Bond Lengths (Å) for $BaAl_4S_7$

REFERENCES

1. A. Benghia, T. Dahame and B. Bentria, Opt. Mater., 2016, 54, 269-275.