Supporting Information for

Improving performance of organic solar cells by supplying additional acceptors to surface of bulk-heterojunction layers

Xiaoyin Xie,^{‡a} Guanchen Liu,^{‡b} Guanjian Cheng,^b Zhihai Liu^{*cd} and Eun-Cheol Lee^{*de}

^aDepartment of Chemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China ^bDepartment of Material Science and Technology, Jilin Institute of Chemical Technology, Jilin 132022, China ^cDepartment of Bio-Nano Technology, Gachon University, Gyeonggi 461-701, Republic of Korea. *E-mail: zhliu@gachon.ac.kr ^dGachon Bio-Nano Research Institute, Gyeonggi 461-701, Republic of Korea ^eDepartment of Nano-Physics, Gachon University, Gyeonggi 461-701, Republic of Korea. *E-mail: eclee@gachon.ac.kr

Fig. S1. J-V characteristics for the OSCs without (control) and with 3, 6, 9, and 12 nm additional PC₇₁BM layer.

Fig. S2. Average values and standard deviations of (a) V_{oc} , (b) J_{sc} , (c) FF, and (d) PCE of 12 individual OSCs.

Fig. S3. *J*–*V* characteristics for the OSCs without (control) and with 3, 5, 7, and 9 nm additional ITIC layer. The inset of the figure shows the molecular structure of ITIC.

Electron mobility measurement

The electron mobility was measured following the space-charge limited current approach. The electrononly device was fabrication using the following architecture ITO/ZnO/PTB7-Th:PC₇₁BM/PC₇₁BM/Al. For the control device, the use of additional PC₇₁BM was skipped. We used a solution-processing method for preparing ZnO following previous work.¹ The J-V characteristics for electron-only devices were measured in the dark. The mobility was calculated from the J-V characteristics following Mott–Gurney law:

$$J = \frac{9\varepsilon_0 \varepsilon_r \mu (V - V_{\rm bi})^2}{8L^3} \tag{1}$$

where *J* is the current density, ε_0 is the permittivity of free space, ε_r is the relative dielectric constant of the organic active layer, *V* is the applied voltage, *V*_{bi} is the built-in voltage, μ is the electron mobility, and *L* is the thickness of the active layer.

Fig. S4. J-V characteristics for the electron-only device without and with 9 nm additional PC₇₁BM.

Fig. S5. Stability of the OSCs without and with 9 nm additional $PC_{71}BM$, in terms of the normalized PCEs, plotted *vs.* time.

		$J_{\rm sc}$ (mA		Average PCE	Best PCE
Device configuration (rigid)	$V_{\rm oc}$ (V)	cm ⁻²)	FF (%)	(%)	(%)
	$0.785 \pm$		$65.5 \pm$		
Without ITIC layer (control)	0.011	16.7 ± 0.3	1.1	8.59 ± 0.31	8.99
	$0.787 \pm$		$66.1 \pm$		
With 3 nm ITIC layer	0.010	16.9 ± 0.3	1.1	8.79 ± 0.32	9.05
	$0.788 \pm$		$67.2 \pm$		
With 5 nm ITIC layer	0.011	17.2 ± 0.3	0.8	9.11 ± 0.28	9.42
	$0.792 \pm$		$68.3 \pm$		
With 7 nm ITIC layer	0.011	17.5 ± 0.3	0.9	9.47 ± 0.29	9.78
-	$0.789 \pm$		$67.5 \pm$		
With 9 nm ITIC layer	0.012	17.3 ± 0.2	1.1	9.21 ± 0.30	9.53

Table S1. Device parameters (average and best values for 12 individual devices in each group) for rigidOSCs based on 0, 3, 5, 7, or 9 nm additional ITIC layer.

Reference

1 Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, and A. J. Heeger, Adv. Mater. 2011, 23, 1679–1683.