Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018 ## Supporting information for: ## Spray deposition of AgBiS₂ and Cu₃BiS₃ thin films for photovoltaic applications Narendra Pai^a, Jianfeng Lu^a, Dimuthu C. Senevirathna^a, Anthony S. R. Chesman^b, Thomas Gengenbach^b, Manjunath Chatti^{ac}, Udo Bach^{b,d,e}, Philip C. Andrews^a, Leone Spiccia^{a,c}, Yi-Bing Cheng^{f,g}, and Alexandr N. Simonov^{a,c} ^a School of Chemistry, Monash University, Melbourne, Victoria, 3800, Australia ^b Commonwealth Scientific and Industrial Research Organisation Manufacturing, Clayton, Victoria 3168, Australia ^c ARC Centre of Excellence for Electromaterials Science, Monash University, Melbourne, Victoria, 3800, Australia ^d ARC Centre of Excellence in Exciton Science and Department of Chemical Engineering, Monash University, Melbourne, Victoria, 3800, Australia ^e The Melbourne Centre for Nanofabrication, Clayton, Victoria 3168, Australia ^f ARC Centre of Excellence in Exciton Science and Department of Materials Science and Engineering, Monash University, Melbourne, Victoria, 3800, Australia. ^g State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China ## **TABLE OF CONTENTS** | | Page | |--|------------| | Figure S1. ¹ H and ¹³ C NMR spectra, results of elemental and mass-spectroscopic analysis of bismuth(III) 4-methyl benzoditholate | S1 | | Figure S2. FTIR spectra | S2 | | Figure S3. Transmission electron micrographs of spray-deposited ${\rm AgBiS_2}$ | S2 | | Figure S4. Thermogravimetric analysis of spray-deposited AgBiS ₂ | S3 | | Figure S5. Survey XP and high-resolution O 1s and S 2s spectra of spray-deposited $AgBiS_2$ | S3 | | Figure S6. Scanning electron micrographs of ZnO ITO | S3 | | Figure S7. Transmittance and reflectance of spray-deposited AgBiS ₂ and Cu ₃ BiS ₃ | S4 | | Figure S8. Photoelectron Spectroscopy in Air of spray-deposited AgBiS ₂ | S4 | | Figure S9. Ultraviolet photoelectron spectra of spray-deposited AgBiS ₂ | S5 | | Table S1. Ultraviolet photoelectron spectroscopic data analysis | S5 | | Figure S10. SEM image of $AgBiS_2$ film and J - V curve for a solar cell based thereon produced following the procedures from Ref. S1 | S6 | | Table S2. Photovoltaic parameters of a AgBiS ₂ -based solar cell produced following the procedures from Ref. ^{S1} | S6 | | Figure S11. <i>J-V</i> curves for Ag HTM AgBiS ₂ ZnO ITO devices based on different hole transporting materials | S7 | | Table S3. Photovoltaic parameters for Ag HTM AgBiS ₂ ZnO ITO devices based on different hole transporting materials | S 7 | | Table S4. Complete summary of the photovoltaic parameters for Ag MoO ₃ ±spiro-OMeTAD AgBiS ₂ ZnO ITO devices produced at different T_{dep} | S8 | | Figure S12. <i>J-V</i> curves for $Ag (MoO_3+)$ spiro-OMeTAD $AgBiS_2 ZnO ITO$ devices produced at $T_{dep} = 150 ^{\circ}C$. | S10 | | Table S5. Series and shunt resistance for $Ag (MoO_3+)$ spiro-OMeTAD $AgBiS_2 ZnO ITO$ derived from <i>J-V</i> curves. | S10 | | Figure S13. J - V curves for Ag MoO ₃ +spiro-OMeTAD AgBiS ₂ ZnO ITO devices with varied thickness of the light-absorber layer. | S11 | | Table S6. Photovoltaic parameters for $Ag MoO_3+spiro-OMeTAD AgBiS_2 ZnO ITO$ devices with varied thickness of the light-absorber layer. | S11 | | Figure S14. Photovoltaic performance of $Ag MoO_3+spiro-OMeTAD AgBiS_2 ZnO ITO$ under varied irradiation intensity. | S12 | | Figure S15. Evolution of the photovoltaic parameters of $Ag MoO_3+spiro-OMeTAD AgBiS_2 ZnO ITO$ stored under ambient conditions. | S12 | | Supplementary references | S13 | **Figure S1.** (a) 1 H- and (b) 13 C-NMR spectra of bismuth 4-methyl benzoditholate $[Bi(4-MBDT)_{3}]$ in d₆-DMSO. HR-MS $(ESI)^{+}$ m/z 543 $[Bi(S_{2}C(C_{6}H_{4})-4-CH_{3})_{2}]^{+}$. Elemental analysis for $C_{24}H_{21}BiS_{6}$: calculated: C 40.56, H 2.98; found: C 40.43, H 2.81. **Figure S2.** Selected ranges of the FTIR spectra of AgBiS₂ films spray-deposited onto glass at different temperatures: (a) 1100-1300 cm⁻¹ range relevant to the aromatic C=S stretching bands (1175 and 1220 cm⁻¹, dashed lines), and (b) 2800-3000 cm⁻¹ range relevant to the C–C stretching bands (2845 and 2915 cm⁻¹, dashed lines). *Pink* and *magenta* curves show spectra for (a) bismuth(III) tris(methyl-benzodithiolate) and (b) 1-octanethiol. **Figure S3.** (a-c) TEM and (d) HRTEM images of AgBiS₂ spray-deposited onto glass at 150 °C (the material was scratched from the support to be analysed by TEM). Inset in panel **b** shows a particle size distribution histogram based on 100 particles. Inset in panel **c** shows an indexed SAED pattern. **Figure S4.** TGA-DSC plot obtained under high-purity Ar atmosphere for the $AgBiS_2$ sample spray-deposited onto ZnO|ITO at 150 °C (the material was scratched from the support surface for the analysis). Sample weight loss and heat flow data are shown as *red* and *blue* curves, respectively. Figure S5. (a) Survey XP spectrum, (b.1) high resolution O 1s and (b.2) S 2s spectra of AgBiS₂ spray-deposited onto ITO at (a) 150 °C or (b) 125 (*blue*), 150 (*red*) and 175 °C (*green*). Figure S6. (a) Lower and (b) higher magnification SEM top-view images of a ZnO film on an ITO support. Figure S7. Reflectance (R, dashed lines) and transmittance (T, solid lines) of (a) AgBiS₂ and (b) Cu₃BiS₃ films spray-deposited on glass at 125 (*blue*), 150 (*red*), 175 (*green*) and 200 °C (*orange*). **Figure S8.** PESA data obtained for the AgBiS₂ films deposited by spray pyrolysis onto glass substrate at 125 (*blue*), 150 (*red*) and 175 °C (*green*). Black lines show linear fits to the data used to derive E_{VB} . Figure S9. (a) Higher and (b) lower binding energy regions of the ultra-violet photoelectron spectra obtained for AgBiS₂ films spray-deposited onto ITO at 125 (*blue*), 150 (*red*) and 175 °C (*green*). *Dotted* lines in panel a and *solid black* lines in panel b show linear fits used to derive secondary electron cut-off and HOMO cut-off, respectively. **Table S1.** Parameters derived from the analysis of the UPS data obtained for AgBiS₂ films spray-deposited onto ITO at different temperatures. | Deposition temperature (°C) | Secondary electron cut-off (eV) ^a | Work
function (eV) b | HOMO
cut-off (eV) ^a | Ionisation
potential (eV) ^c | |-----------------------------|--|-------------------------|-----------------------------------|---| | 125 | 16.82 | -4.40 | -0.75 | -5.15 | | 150 | 16.66 | -4.56 | -0.65 | -5.21 | | 175 | 16.66 | -4.56 | -0.60 | -5.16 | ^a Derived from experimental data as exemplified in Figure S9. ^b Calculated as difference between an incident photon energy (21.22 eV) and secondary electron cut-off. ^c Calculated as a difference between work function and HOMO cut-off; ionisation potential serves as a reasonably accurate estimate of the valence band energy level.^{S1} Figure S10. Characterisation of a AgBiS₂ thin layer and AgBiS₂-based solar cells fabricated following the procedures reported by Bernechea *et al.*^{S2}: (a) SEM top-view image of the AgBiS₂ film on ZnO|ITO; (b) photocurrent-voltage curves (scan rate 100 mV s⁻¹) measured under 1 sun AM1.5G irradiation for the Au|MoO₃+HTM|AgBiS₂|ZnO|ITO devices (aperture 0.16 cm²) with spiro-OMeTAD (*tan*), P3HT (*blue*) or PTB7 (*grey*) as a HTM. Dashed lines with arrows and solid lines show reverse and forward bias scanning, respectively. Dotted lines are guides to the eye showing zero J and V. **Table S2.** Photovoltaic parameters^a for planar $Ag|MoO_3+spiro-OMeTAD|AgBiS_2|ZnO|ITO$ solar cells with the light absorber layer prepared as reported in Ref.^{S2} under 1 sun AM1.5G irradiation (aperture 0.16 cm²). | HTM | Ref. | $V_{\rm oc} ({\rm mV})$ | $J_{\rm SC}$ (mA cm ⁻²) | FF (%) | PCE (%) | |---------------|------------------------|--------------------------|-------------------------------------|----------------|-----------------| | · OM TAD | Bernechea et al. S2 | 420 | 6.60 | 42 | 1.16 | | spiro- OMeTAD | This work ^b | 394 ± 6 | 8.0 ± 0.1 | 37.0 ± 0.2 | 1.2 ± 0.1 | | РЗНТ | Bernechea et al. S2 | 460 | 15.1 | 57 | 3.99 | | | This work ^b | 454 ± 6 | 16.5 ± 0.2 | 45.0 ± 0.2 | 3.5 ± 0.1 | | PTB7 | Bernechea et al. S2 | 460 ± 10 | 17.5 ± 1.4 | 60±3 | 4.8 ± 0.4 | | | This work ^b | 145 ± 4 | 4.5 ± 0.2 | 30.0 ± 0.4 | 0.20 ± 0.05 | ^a Derived from the J-V curves (sweep rate 100 mV s⁻¹) for 10 devices of each type with an aperture of 0.16 cm²; V_{oc} - open circuit voltage, J_{sc} – short circuit current density, FF – fill factor, PCE – power conversion efficiency. ^b Devices reproduced in our laboratory. Figure S11. (a) Photocurrent-voltage curves (scan rate 100 mV s⁻¹) measured under 1 sun AM1.5G irradiation for the Ag|HTM|AgBiS₂|ZnO|ITO devices based on the AgBiS₂ films spray-deposited at 150 °C and with P3HT+MoO₃ (*maroon*), PTB7+MoO₃ (*indigo*), CuSCN (*black*), CuI (*grey*) and [Co(bpyPY₄)](OTf)_{2.66} (*brown*) as HTM. Dashed lines with arrows and solid lines show reverse and forward bias scanning, respectively. Dotted lines are guides to the eye showing zero J and V. **Table S3.** Photovoltaic parameters^a of the planar $Ag|HTM|AgBiS_2|ZnO|ITO$ solar cells with different hole transport layers under 1 sun AM1.5G irradiation (aperture 0.16 cm²). | HTM | $V_{\rm oc}({ m mV})$ | $J_{\rm SC}$ (mA cm ⁻²) | FF (%) | PCE (%) | |----------------------------|-----------------------|-------------------------------------|------------|-----------------| | P3HT + MoO ₃ | 228 ± 5 | 8.3 ± 0.1 | 32 ± 1 | 0.6 ± 0.1 | | $PTB7 + MoO_3$ | 216 ± 4 | 5.3 ± 0.1 | 34 ± 1 | 0.4 ± 0.1 | | CuSCN | 239 ± 4 | 2.2 ± 0.1 | 36 ± 0 | 0.2 ± 0.0 | | CuI | 238 ± 8 | 0.8 ± 0.1 | 32 ± 0 | 0.07 ± 0.04 | | $[Co(bpyPY4)](OTf)_{2.66}$ | 143 ± 5 | 0.9 ± 0.3 | 28 ± 1 | 0.04 ± 0.02 | | Spiro-OMeTAD + MoO_3 | 241 ± 7 | 18.1 ± 0.6 | 35 ± 1 | 1.5 ± 0.1 | ^a Derived from the *J-V* curves (sweep rate of 100 mV s⁻¹) for 10 devices of each type with an aperture of 0.16 cm²; V_{oc} - open circuit voltage, J_{sc} - short circuit current density, FF – fill factor, PCE – power conversion efficiency. **Table S4.** Photovoltaic parameters^a of the planar $Ag|(MoO_3+)$ spiro-OMeTAD| $AgBiS_2|ZnO|ITO$ solar cells with the light absorber formed by spray pyrolysis at different temperatures under 1 sun irradiation. | $T_{ m dep}(^{\circ}{ m C})$ | MoO ₃ b | | $V_{ m oc}({ m mV})$ | $J_{\rm sc}$ (mA cm ⁻²) | FF (%) | PCE (%) | |------------------------------|--------------------|-----------------------------|----------------------|-------------------------------------|----------------|-----------------| | | | SC to OC ^c | 194 ± 3 | 9.6 ± 0.2 | 32.6 ± 0.4 | 0.61 ± 0.03 | | | N | OC to SC ^c | 191 ± 4 | 9.5 ± 0.3 | 32.1 ± 0.5 | 0.58 ± 0.04 | | 125 | | Best ^d | 200 | 9.7 | 32.9 | 0.64 | | 123 | | SC to OC | 230 ± 3 | 10.8 ± 0.4 | 32.8 ± 0.5 | 0.78 ± 0.03 | | | Y | OC to SC | 227 ± 2 | 10.5 ± 0.3 | 31.9 ± 0.4 | 0.76 ± 0.03 | | | | Best | 231 | 10.6 | 33.0 | 0.81 | | | | SC to OC | 197 ± 4 | 12.6 ± 0.4 | 32.8 ± 0.4 | 0.82 ± 0.03 | | | N | OC to SC | 193 ± 4 | 12.5 ± 0.3 | 32.4 ± 0.5 | 0.78 ± 0.06 | | 137 | | Best | 203 | 12.8 | 33.1 | 0.86 | | 137 | | SC to OC | 236 ± 4 | 14.7 ± 0.4 | 33.0 ± 0.3 | 1.14 ± 0.05 | | | Y | OC to SC | 234 ± 3 | 13.8 ± 0.5 | 33.2 ± 0.2 | 1.08 ± 0.07 | | | | Best | 237 | 15.1 | 33.2 | 1.19 | | | | FB to SC | 201 ± 5 | 15.4 ± 0.3 | 33.7 ± 0.3 | 1.04 ± 0.05 | | | N | SC to FB | 199 ± 3 | 14.6 ± 0.5 | 33.5 ± 0.4 | 0.98 ± 0.07 | | | | Best | 207 | 15.7 | 34.1 | 1.11 | | 150 | Y | SC to OC | 241 ± 7 | 18.1 ± 0.6 | 34.6 ± 0.5 | 1.50 ± 0.12 | | | | OC to SC | 239 ± 4 | 17.9 ± 0.5 | 34.4 ± 0.2 | 1.46 ± 0.07 | | | | Best | 251 | 18.9 | 35.8 | 1.69 | | | | Best (1 cm ²) e | 246 | 14.9 | 34.1 | 1.25 | | | | SC to OC | 200 ± 4 | 11.7 ± 0.3 | 34.5 ± 0.3 | 0.80 ± 0.03 | | | N | OC to SC | 198 ± 3 | 10.6 ± 0.5 | 34.2 ± 0.4 | 0.73 ± 0.06 | | 163 | | Best | 204 | 11.8 | 34.6 | 0.83 | | | | SC to OC | 237 ± 5 | 14.1 ± 0.4 | 35.1 ± 0.4 | 1.17 ± 0.05 | | | Y | OC to SC | 234 ± 6 | 13.8 ± 0.4 | 34.8 ± 0.5 | 1.13 ± 0.05 | | | | Best | 236 | 14.73 | 34.9 | 1.21 | ^a Derived from the J-V curves (sweep rate 100 mV s⁻¹) for 10 devices of each type with an aperture of 0.16 cm² in all cases except for $T_{\underline{\text{dep}}}$ = 150 where apertures of 0.16 and 1.00 cm² were applied; V_{oc} – open circuit voltage, J_{sc} – short circuit current density, FF – fill factor, PCE – power conversion efficiency. ^b Solar cells without (N) and with (Y) MoO₃ evaporated on top of the spiro-OMeTAD layer. ^c Mean values and standard deviation derived from measurements from short-circuit (SC) to open-circuit (OC) and in the opposite direction (OC to SC). ^d Data for the best-performing solar cell measured in the SC to OC direction. ^e Data for the best-performing solar cell with a working area of 1 cm² measured in the SC to OC direction. **Table S4 (continued).** Photovoltaic parameters^a of the planar $Ag|(MoO_3+)$ spiro-OMeTAD|AgBiS₂|ZnO|ITO solar cells with the light absorber obtained by spray pyrolysis at different temperatures under 1 sun AM1.5G irradiation. | $T_{ ext{dep}}(^{\circ} ext{C})$ | MoO_3^b | | $V_{\rm oc}({ m mV})$ | $J_{\rm sc}$ (mA cm ⁻²) | FF (%) | PCE (%) | |----------------------------------|-----------|-----------------------|-----------------------|-------------------------------------|----------------|-----------------| | | | SC to OC ^c | 198 ± 5 | 9.9 ± 0.3 | 34.7 ± 0.3 | 0.68 ± 0.05 | | | N | OC to SC^c | 197 ± 2 | 9.6 ± 0.4 | 34.5 ± 0.4 | 0.66 ± 0.03 | | 175 | | Best ^d | 201 | 10.7 | 35.1 | 0.76 | | 175 | | SC to OC | 234 ± 4 | 10.4 ± 0.3 | 35.6 ± 0.3 | 0.87 ± 0.03 | | | Y | OC to SC | 232 ± 3 | 10.3 ± 0.3 | 35.2 ± 0.3 | 0.84 ± 0.03 | | | | Best | 239 | 10.5 | 35.9 | 0.90 | | | N | SC to OC | 196 ± 4 | 7.8 ± 0.3 | 34.8 ± 0.3 | 0.53 ± 0.04 | | | | OC to SC | 193 ± 5 | 7.0 ± 0.5 | 34.7 ± 0.2 | 0.48 ± 0.05 | | 200 | | Best | 200 | 8.2 | 35.4 | 0.58 | | | Y | SC to OC | 231 ± 5 | 8.9 ± 0.4 | 36.0 ± 0.4 | 0.74 ± 0.07 | | | | SC to OC^{c} | 198 ± 5 | 9.9 ± 0.3 | 34.7 ± 0.3 | 0.68 ± 0.05 | | | | OC to SC^{c} | 197 ± 2 | 9.6 ± 0.4 | 34.5 ± 0.4 | 0.66 ± 0.03 | ^a Derived from the *J-V* curves (sweep rate 100 mV s⁻¹) for 10 devices of each type with an aperture of 0.16 cm²; V_{oc} – open circuit voltage, J_{sc} – short circuit current density, FF – fill factor, PCE – power conversion efficiency. ^b Solar cells without (N) and with (Y) MoO₃ evaporated on top of the spiro-OMeTAD layer. ^c Mean values and standard deviation derived from measurements from short-circuit (SC) to open-circuit (OC) and in the opposite direction (OC to SC). ^d Data for the best-performing solar cell measured in the SC to OC direction. Figure S12. Estimation of the shunt $(R_{\rm sh})$ and series $(R_{\rm s})$ resistance by linear approximations (black dotted lines) to the J-V data (sweep rate 100 mV s⁻¹; 1 sun AM1.5G) for the Ag|MoO₃+spiro-OMeTAD|AgBiS₂|ZnO|ITO solar cell (aperture 0.16 cm²) with the light-absorber layer spray-deposited at 150 °C. **Table S5.** Series (R_s) and shunt (R_{sh}) resistance^{a, b} for Ag|spiro-OMeTAD|AgBiS₂|ZnO|ITO solar cells with the light absorber layer obtained at different temperatures. | $T_{ m dep}(^{\circ}{ m C})$ | MoO ₃ c | R_{sh}^{a} $(\Omega \ \mathrm{cm}^{-2})$ | R_s^{b} $(\Omega \mathrm{cm^{-2}})$ | |------------------------------|--------------------|--|--| | 125 | N | 33 | 15 | | 125 | Y | 37 | 14 | | 150 | N | 28 | 13 | | | Y | 30 | 7.3 | | 175 | N | 32 | 14 | | | Y | 45 | 14 | $^{^{}a,b}$ Derived from the *J-V* data as exemplified in Figure S14. c Solar cells with (Y) and without (N) MoO₃ evaporated on top of the spiro-OMeTAD layer. Figure S13. (a) Photocurrent-voltage curves (scan rate 100 mV s⁻¹; open-circuit to short-circuit sweeps are omitted for clarity) measured under 1 sun AM1.5G irradiation for the $Ag|MoO_3+spiro-OMeTAD|AgBiS_2|ZnO|ITO$ devices (aperture 0.16 cm⁻²) with the light harvester layer spray-deposited at 150 °C for different number of deposition cycles. **Table S6.** Photovoltaic performance^a of the planar Ag|MoO₃+spiro-OMeTAD|AgBiS₂|ZnO|ITO solar cells with the light absorber layer obtained with different number of spraying cycles at $T_{\text{dep}} = 150 \,^{\circ}\text{C}$. | Number of deposition cycles ^b | | $V_{ m oc}\left({ m mV} ight)$ | $J_{\rm SC}$ (mA cm ⁻²) | FF (%) | PCE (%) | |--|-----------------------|--------------------------------|-------------------------------------|----------------|-----------------| | 10 | SC to OC ^c | 187 ± 6 | 14.2 ± 0.2 | 32.2 ± 0.4 | 0.87 ± 0.05 | | 10 | OC to SC ^c | 184 ± 5 | 13.9 ± 0.4 | 31.8 ± 0.5 | 0.85 ± 0.06 | | 1.1 | SC to OC | 222 ± 7 | 15.1 ± 0.6 | 33.0 ± 0.4 | 1.11 ± 0.08 | | 11 | OC to SC | 221 ± 4 | 14.6 ± 0.7 | 32.7 ± 0.5 | 1.08 ± 0.05 | | 12 | SC to OC | 241 ± 7 | 18.1 ± 0.6 | 34.6 ± 0.5 | 1.50 ± 0.12 | | 12 | OC to SC | 239 ± 4 | 17.9 ± 0.5 | 34.4 ± 0.2 | 1.46 ± 0.07 | | 13 | SC to OC | 253 ± 4 | 16.8 ± 0.4 | 34.1 ± 0.3 | 1.41 ± 0.05 | | 13 | OC to SC | 251 ± 5 | 16.7 ± 0.3 | 33.7 ± 0.4 | 1.39 ± 0.06 | | 14 | SC to OC | 290 ± 3 | 9.9 ± 0.3 | 32.1 ± 0.5 | 0.92 ± 0.03 | | | OC to SC | 287 ± 4 | 9.8 ± 0.4 | 31.9 ± 0.4 | 0.90 ± 0.04 | | 16 | SC to OC ^c | 345 ± 5 | 6.3 ± 0.5 | 35.0 ± 0.3 | 0.75 ± 0.05 | | | OC to SC ^d | 342 ± 5 | 5.9 ± 0.6 | 34.4 ± 0.5 | 0.70 ± 0.07 | | 10 | SC to OC ^c | 434 ± 4 | 3.3 ± 0.7 | 42.1 ± 0.4 | 0.58 ± 0.06 | | 18 | OC to SC ^d | 431 ± 5 | 3.3 ± 0.5 | 41.9 ± 0.4 | 0.57 ± 0.05 | ^a Derived from the *J-V* curves (sweep rate 100 mV s⁻¹) for 10 devices of each type with an aperture of 0.16 cm²; V_{oc} - open circuit voltage, J_{sc} - short circuit current density, FF - fill factor, PCE - power conversion efficiency. ^b Solar cells fabricated by varying number of spraying cycles of AgBiS₂. ^c Mean values and standard deviations derived from measurements from short-circuit (SC) to open-circuit (OC) and in the opposite direction (OC to SC). **Figure S14.** Dependence of (a) short-circuit current density and (b) open-circuit voltage for the $Ag|MoO_3+spiro-OMeTAD|AgBiS_2|ZnO|ITO$ solar cells ($T_{dep}=150\,^{\circ}C$; 12 spray cycles) on irradiation intensity (P). Solid lines show linear approximations to the experimental data. In panel \mathbf{b} , the ideality factor n is calculated by the equation for free carrier transport proposed by Koster et al. S_3 , S_4 **Figure S15.** Evolution of the photovoltaic parameters of a non-encapsulated $Au|MoO_3+spiro-OMeTAD|AgBiS_2|ZnO|ITO$ device stored on air under diffuse light for 1 month. The $AgBiS_2$ film was spray-deposited at 150 °C. Data were derived from J-V curves (scan rate 100 mV s⁻¹) recorded from short circuit to open circuit under 1 sun AM1.5G irradiation. Starting parameter values were V_{OC} =250 mV, J_{SC} = 17.6 mA cm⁻², FF = 33.8 %, PCE = 1.49 %. ## **SUPPLEMENTARY REFENRECES** - S1. Shu, Y.; Mikosch, A.; Winzenberg, K. N.; Kemppinen, P.; Easton, C. D.; Bilic, A.; Forsyth, C. M.; Dunn, C. J.; Singh, T.; Collis, G. E., N -Alkyl functionalized barbituric and thiobarbituric acid bithiophene derivatives for vacuum deposited n-channel OFETs. *J. Mater. Chem. C* **2014**, *2*, 3895-3899. - S2. Bernechea, M.; Miller, N.; Xercavins, G.; So, D.; Stavrinadis, A.; Konstantatos, G., Solution-processed solar cells based on environmentally friendly AgBiS₂ nanocrystals. *Nat. Photon.* **2016**, *10*, 521-525. - S3. Koster, L. J. A.; Mihailetchi, V. D.; Ramaker, R.; Blom, P. W. M., Light intensity dependence of open-circuit voltage of polymer: fullerene solar cells. *Appl. Phys. Lett.* **2005**, *86*, 123509. - S4. Proctor, C. M.; Kuik, M.; Nguyen, T.-Q., Charge carrier recombination in organic solar cells. *Prog. Polym. Sci.* **2013,** *38,* 1941-1960.