Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supporting information for:

Spray deposition of AgBiS₂ and Cu₃BiS₃ thin films for photovoltaic applications

Narendra Pai^a, Jianfeng Lu^a, Dimuthu C. Senevirathna^a, Anthony S. R. Chesman^b, Thomas Gengenbach^b, Manjunath Chatti^{ac}, Udo Bach^{b,d,e}, Philip C. Andrews^a, Leone Spiccia^{a,c}, Yi-Bing Cheng^{f,g}, and Alexandr N. Simonov^{a,c}

^a School of Chemistry, Monash University, Melbourne, Victoria, 3800, Australia

^b Commonwealth Scientific and Industrial Research Organisation Manufacturing, Clayton, Victoria 3168, Australia

^c ARC Centre of Excellence for Electromaterials Science, Monash University, Melbourne, Victoria, 3800, Australia

^d ARC Centre of Excellence in Exciton Science and Department of Chemical Engineering, Monash University, Melbourne, Victoria, 3800, Australia

^e The Melbourne Centre for Nanofabrication, Clayton, Victoria 3168, Australia

^f ARC Centre of Excellence in Exciton Science and Department of Materials Science and Engineering, Monash University, Melbourne, Victoria, 3800, Australia.

^g State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

TABLE OF CONTENTS

	Page
Figure S1. ¹ H and ¹³ C NMR spectra, results of elemental and mass-spectroscopic analysis of bismuth(III) 4-methyl benzoditholate	S1
Figure S2. FTIR spectra	S2
Figure S3. Transmission electron micrographs of spray-deposited ${\rm AgBiS_2}$	S2
Figure S4. Thermogravimetric analysis of spray-deposited AgBiS ₂	S3
Figure S5. Survey XP and high-resolution O 1s and S 2s spectra of spray-deposited $AgBiS_2$	S3
Figure S6. Scanning electron micrographs of ZnO ITO	S3
Figure S7. Transmittance and reflectance of spray-deposited AgBiS ₂ and Cu ₃ BiS ₃	S4
Figure S8. Photoelectron Spectroscopy in Air of spray-deposited AgBiS ₂	S4
Figure S9. Ultraviolet photoelectron spectra of spray-deposited AgBiS ₂	S5
Table S1. Ultraviolet photoelectron spectroscopic data analysis	S5
Figure S10. SEM image of $AgBiS_2$ film and J - V curve for a solar cell based thereon produced following the procedures from Ref. S1	S6
Table S2. Photovoltaic parameters of a AgBiS ₂ -based solar cell produced following the procedures from Ref. ^{S1}	S6
Figure S11. <i>J-V</i> curves for Ag HTM AgBiS ₂ ZnO ITO devices based on different hole transporting materials	S7
Table S3. Photovoltaic parameters for Ag HTM AgBiS ₂ ZnO ITO devices based on different hole transporting materials	S 7
Table S4. Complete summary of the photovoltaic parameters for Ag MoO ₃ ±spiro-OMeTAD AgBiS ₂ ZnO ITO devices produced at different T_{dep}	S8
Figure S12. <i>J-V</i> curves for $Ag (MoO_3+)$ spiro-OMeTAD $AgBiS_2 ZnO ITO$ devices produced at $T_{dep} = 150 ^{\circ}C$.	S10
Table S5. Series and shunt resistance for $Ag (MoO_3+)$ spiro-OMeTAD $AgBiS_2 ZnO ITO$ derived from <i>J-V</i> curves.	S10
Figure S13. J - V curves for Ag MoO ₃ +spiro-OMeTAD AgBiS ₂ ZnO ITO devices with varied thickness of the light-absorber layer.	S11
Table S6. Photovoltaic parameters for $Ag MoO_3+spiro-OMeTAD AgBiS_2 ZnO ITO$ devices with varied thickness of the light-absorber layer.	S11
Figure S14. Photovoltaic performance of $Ag MoO_3+spiro-OMeTAD AgBiS_2 ZnO ITO$ under varied irradiation intensity.	S12
Figure S15. Evolution of the photovoltaic parameters of $Ag MoO_3+spiro-OMeTAD AgBiS_2 ZnO ITO$ stored under ambient conditions.	S12
Supplementary references	S13

Figure S1. (a) 1 H- and (b) 13 C-NMR spectra of bismuth 4-methyl benzoditholate $[Bi(4-MBDT)_{3}]$ in d₆-DMSO. HR-MS $(ESI)^{+}$ m/z 543 $[Bi(S_{2}C(C_{6}H_{4})-4-CH_{3})_{2}]^{+}$. Elemental analysis for $C_{24}H_{21}BiS_{6}$: calculated: C 40.56, H 2.98; found: C 40.43, H 2.81.

Figure S2. Selected ranges of the FTIR spectra of AgBiS₂ films spray-deposited onto glass at different temperatures: (a) 1100-1300 cm⁻¹ range relevant to the aromatic C=S stretching bands (1175 and 1220 cm⁻¹, dashed lines), and (b) 2800-3000 cm⁻¹ range relevant to the C–C stretching bands (2845 and 2915 cm⁻¹, dashed lines). *Pink* and *magenta* curves show spectra for (a) bismuth(III) tris(methyl-benzodithiolate) and (b) 1-octanethiol.

Figure S3. (a-c) TEM and (d) HRTEM images of AgBiS₂ spray-deposited onto glass at 150 °C (the material was scratched from the support to be analysed by TEM). Inset in panel **b** shows a particle size distribution histogram based on 100 particles. Inset in panel **c** shows an indexed SAED pattern.

Figure S4. TGA-DSC plot obtained under high-purity Ar atmosphere for the $AgBiS_2$ sample spray-deposited onto ZnO|ITO at 150 °C (the material was scratched from the support surface for the analysis). Sample weight loss and heat flow data are shown as *red* and *blue* curves, respectively.

Figure S5. (a) Survey XP spectrum, (b.1) high resolution O 1s and (b.2) S 2s spectra of AgBiS₂ spray-deposited onto ITO at (a) 150 °C or (b) 125 (*blue*), 150 (*red*) and 175 °C (*green*).

Figure S6. (a) Lower and (b) higher magnification SEM top-view images of a ZnO film on an ITO support.

Figure S7. Reflectance (R, dashed lines) and transmittance (T, solid lines) of (a) AgBiS₂ and (b) Cu₃BiS₃ films spray-deposited on glass at 125 (*blue*), 150 (*red*), 175 (*green*) and 200 °C (*orange*).

Figure S8. PESA data obtained for the AgBiS₂ films deposited by spray pyrolysis onto glass substrate at 125 (*blue*), 150 (*red*) and 175 °C (*green*). Black lines show linear fits to the data used to derive E_{VB} .

Figure S9. (a) Higher and (b) lower binding energy regions of the ultra-violet photoelectron spectra obtained for AgBiS₂ films spray-deposited onto ITO at 125 (*blue*), 150 (*red*) and 175 °C (*green*). *Dotted* lines in panel a and *solid black* lines in panel b show linear fits used to derive secondary electron cut-off and HOMO cut-off, respectively.

Table S1. Parameters derived from the analysis of the UPS data obtained for AgBiS₂ films spray-deposited onto ITO at different temperatures.

Deposition temperature (°C)	Secondary electron cut-off (eV) ^a	Work function (eV) b	HOMO cut-off (eV) ^a	Ionisation potential (eV) ^c
125	16.82	-4.40	-0.75	-5.15
150	16.66	-4.56	-0.65	-5.21
175	16.66	-4.56	-0.60	-5.16

^a Derived from experimental data as exemplified in Figure S9. ^b Calculated as difference between an incident photon energy (21.22 eV) and secondary electron cut-off. ^c Calculated as a difference between work function and HOMO cut-off; ionisation potential serves as a reasonably accurate estimate of the valence band energy level.^{S1}

Figure S10. Characterisation of a AgBiS₂ thin layer and AgBiS₂-based solar cells fabricated following the procedures reported by Bernechea *et al.*^{S2}: (a) SEM top-view image of the AgBiS₂ film on ZnO|ITO; (b) photocurrent-voltage curves (scan rate 100 mV s⁻¹) measured under 1 sun AM1.5G irradiation for the Au|MoO₃+HTM|AgBiS₂|ZnO|ITO devices (aperture 0.16 cm²) with spiro-OMeTAD (*tan*), P3HT (*blue*) or PTB7 (*grey*) as a HTM. Dashed lines with arrows and solid lines show reverse and forward bias scanning, respectively. Dotted lines are guides to the eye showing zero J and V.

Table S2. Photovoltaic parameters^a for planar $Ag|MoO_3+spiro-OMeTAD|AgBiS_2|ZnO|ITO$ solar cells with the light absorber layer prepared as reported in Ref.^{S2} under 1 sun AM1.5G irradiation (aperture 0.16 cm²).

HTM	Ref.	$V_{\rm oc} ({\rm mV})$	$J_{\rm SC}$ (mA cm ⁻²)	FF (%)	PCE (%)
· OM TAD	Bernechea et al. S2	420	6.60	42	1.16
spiro- OMeTAD	This work ^b	394 ± 6	8.0 ± 0.1	37.0 ± 0.2	1.2 ± 0.1
РЗНТ	Bernechea et al. S2	460	15.1	57	3.99
	This work ^b	454 ± 6	16.5 ± 0.2	45.0 ± 0.2	3.5 ± 0.1
PTB7	Bernechea et al. S2	460 ± 10	17.5 ± 1.4	60±3	4.8 ± 0.4
	This work ^b	145 ± 4	4.5 ± 0.2	30.0 ± 0.4	0.20 ± 0.05

^a Derived from the J-V curves (sweep rate 100 mV s⁻¹) for 10 devices of each type with an aperture of 0.16 cm²; V_{oc} - open circuit voltage, J_{sc} – short circuit current density, FF – fill factor, PCE – power conversion efficiency. ^b Devices reproduced in our laboratory.

Figure S11. (a) Photocurrent-voltage curves (scan rate 100 mV s⁻¹) measured under 1 sun AM1.5G irradiation for the Ag|HTM|AgBiS₂|ZnO|ITO devices based on the AgBiS₂ films spray-deposited at 150 °C and with P3HT+MoO₃ (*maroon*), PTB7+MoO₃ (*indigo*), CuSCN (*black*), CuI (*grey*) and [Co(bpyPY₄)](OTf)_{2.66} (*brown*) as HTM. Dashed lines with arrows and solid lines show reverse and forward bias scanning, respectively. Dotted lines are guides to the eye showing zero J and V.

Table S3. Photovoltaic parameters^a of the planar $Ag|HTM|AgBiS_2|ZnO|ITO$ solar cells with different hole transport layers under 1 sun AM1.5G irradiation (aperture 0.16 cm²).

HTM	$V_{\rm oc}({ m mV})$	$J_{\rm SC}$ (mA cm ⁻²)	FF (%)	PCE (%)
P3HT + MoO ₃	228 ± 5	8.3 ± 0.1	32 ± 1	0.6 ± 0.1
$PTB7 + MoO_3$	216 ± 4	5.3 ± 0.1	34 ± 1	0.4 ± 0.1
CuSCN	239 ± 4	2.2 ± 0.1	36 ± 0	0.2 ± 0.0
CuI	238 ± 8	0.8 ± 0.1	32 ± 0	0.07 ± 0.04
$[Co(bpyPY4)](OTf)_{2.66}$	143 ± 5	0.9 ± 0.3	28 ± 1	0.04 ± 0.02
Spiro-OMeTAD + MoO_3	241 ± 7	18.1 ± 0.6	35 ± 1	1.5 ± 0.1

^a Derived from the *J-V* curves (sweep rate of 100 mV s⁻¹) for 10 devices of each type with an aperture of 0.16 cm²; V_{oc} - open circuit voltage, J_{sc} - short circuit current density, FF – fill factor, PCE – power conversion efficiency.

Table S4. Photovoltaic parameters^a of the planar $Ag|(MoO_3+)$ spiro-OMeTAD| $AgBiS_2|ZnO|ITO$ solar cells with the light absorber formed by spray pyrolysis at different temperatures under 1 sun irradiation.

$T_{ m dep}(^{\circ}{ m C})$	MoO ₃ b		$V_{ m oc}({ m mV})$	$J_{\rm sc}$ (mA cm ⁻²)	FF (%)	PCE (%)
		SC to OC ^c	194 ± 3	9.6 ± 0.2	32.6 ± 0.4	0.61 ± 0.03
	N	OC to SC ^c	191 ± 4	9.5 ± 0.3	32.1 ± 0.5	0.58 ± 0.04
125		Best ^d	200	9.7	32.9	0.64
123		SC to OC	230 ± 3	10.8 ± 0.4	32.8 ± 0.5	0.78 ± 0.03
	Y	OC to SC	227 ± 2	10.5 ± 0.3	31.9 ± 0.4	0.76 ± 0.03
		Best	231	10.6	33.0	0.81
		SC to OC	197 ± 4	12.6 ± 0.4	32.8 ± 0.4	0.82 ± 0.03
	N	OC to SC	193 ± 4	12.5 ± 0.3	32.4 ± 0.5	0.78 ± 0.06
137		Best	203	12.8	33.1	0.86
137		SC to OC	236 ± 4	14.7 ± 0.4	33.0 ± 0.3	1.14 ± 0.05
	Y	OC to SC	234 ± 3	13.8 ± 0.5	33.2 ± 0.2	1.08 ± 0.07
		Best	237	15.1	33.2	1.19
		FB to SC	201 ± 5	15.4 ± 0.3	33.7 ± 0.3	1.04 ± 0.05
	N	SC to FB	199 ± 3	14.6 ± 0.5	33.5 ± 0.4	0.98 ± 0.07
		Best	207	15.7	34.1	1.11
150	Y	SC to OC	241 ± 7	18.1 ± 0.6	34.6 ± 0.5	1.50 ± 0.12
		OC to SC	239 ± 4	17.9 ± 0.5	34.4 ± 0.2	1.46 ± 0.07
		Best	251	18.9	35.8	1.69
		Best (1 cm ²) e	246	14.9	34.1	1.25
		SC to OC	200 ± 4	11.7 ± 0.3	34.5 ± 0.3	0.80 ± 0.03
	N	OC to SC	198 ± 3	10.6 ± 0.5	34.2 ± 0.4	0.73 ± 0.06
163		Best	204	11.8	34.6	0.83
		SC to OC	237 ± 5	14.1 ± 0.4	35.1 ± 0.4	1.17 ± 0.05
	Y	OC to SC	234 ± 6	13.8 ± 0.4	34.8 ± 0.5	1.13 ± 0.05
		Best	236	14.73	34.9	1.21

^a Derived from the J-V curves (sweep rate 100 mV s⁻¹) for 10 devices of each type with an aperture of 0.16 cm² in all cases except for $T_{\underline{\text{dep}}}$ = 150 where apertures of 0.16 and 1.00 cm² were applied; V_{oc} – open circuit voltage, J_{sc} – short circuit current density, FF – fill factor, PCE – power conversion efficiency. ^b Solar cells without (N) and with (Y) MoO₃ evaporated on top of the spiro-OMeTAD layer. ^c Mean values and standard deviation derived from measurements from short-circuit (SC) to open-circuit (OC) and in the opposite direction (OC to SC). ^d Data for the best-performing solar cell measured in the SC to OC direction. ^e Data for the best-performing solar cell with a working area of 1 cm² measured in the SC to OC direction.

Table S4 (continued). Photovoltaic parameters^a of the planar $Ag|(MoO_3+)$ spiro-OMeTAD|AgBiS₂|ZnO|ITO solar cells with the light absorber obtained by spray pyrolysis at different temperatures under 1 sun AM1.5G irradiation.

$T_{ ext{dep}}(^{\circ} ext{C})$	MoO_3^b		$V_{\rm oc}({ m mV})$	$J_{\rm sc}$ (mA cm ⁻²)	FF (%)	PCE (%)
		SC to OC ^c	198 ± 5	9.9 ± 0.3	34.7 ± 0.3	0.68 ± 0.05
	N	OC to SC^c	197 ± 2	9.6 ± 0.4	34.5 ± 0.4	0.66 ± 0.03
175		Best ^d	201	10.7	35.1	0.76
175		SC to OC	234 ± 4	10.4 ± 0.3	35.6 ± 0.3	0.87 ± 0.03
	Y	OC to SC	232 ± 3	10.3 ± 0.3	35.2 ± 0.3	0.84 ± 0.03
		Best	239	10.5	35.9	0.90
	N	SC to OC	196 ± 4	7.8 ± 0.3	34.8 ± 0.3	0.53 ± 0.04
		OC to SC	193 ± 5	7.0 ± 0.5	34.7 ± 0.2	0.48 ± 0.05
200		Best	200	8.2	35.4	0.58
	Y	SC to OC	231 ± 5	8.9 ± 0.4	36.0 ± 0.4	0.74 ± 0.07
		SC to OC^{c}	198 ± 5	9.9 ± 0.3	34.7 ± 0.3	0.68 ± 0.05
		OC to SC^{c}	197 ± 2	9.6 ± 0.4	34.5 ± 0.4	0.66 ± 0.03

^a Derived from the *J-V* curves (sweep rate 100 mV s⁻¹) for 10 devices of each type with an aperture of 0.16 cm²; V_{oc} – open circuit voltage, J_{sc} – short circuit current density, FF – fill factor, PCE – power conversion efficiency. ^b Solar cells without (N) and with (Y) MoO₃ evaporated on top of the spiro-OMeTAD layer. ^c Mean values and standard deviation derived from measurements from short-circuit (SC) to open-circuit (OC) and in the opposite direction (OC to SC). ^d Data for the best-performing solar cell measured in the SC to OC direction.

Figure S12. Estimation of the shunt $(R_{\rm sh})$ and series $(R_{\rm s})$ resistance by linear approximations (black dotted lines) to the J-V data (sweep rate 100 mV s⁻¹; 1 sun AM1.5G) for the Ag|MoO₃+spiro-OMeTAD|AgBiS₂|ZnO|ITO solar cell (aperture 0.16 cm²) with the light-absorber layer spray-deposited at 150 °C.

Table S5. Series (R_s) and shunt (R_{sh}) resistance^{a, b} for Ag|spiro-OMeTAD|AgBiS₂|ZnO|ITO solar cells with the light absorber layer obtained at different temperatures.

$T_{ m dep}(^{\circ}{ m C})$	MoO ₃ c	R_{sh}^{a} $(\Omega \ \mathrm{cm}^{-2})$	R_s^{b} $(\Omega \mathrm{cm^{-2}})$
125	N	33	15
125	Y	37	14
150	N	28	13
	Y	30	7.3
175	N	32	14
	Y	45	14

 $^{^{}a,b}$ Derived from the *J-V* data as exemplified in Figure S14. c Solar cells with (Y) and without (N) MoO₃ evaporated on top of the spiro-OMeTAD layer.

Figure S13. (a) Photocurrent-voltage curves (scan rate 100 mV s⁻¹; open-circuit to short-circuit sweeps are omitted for clarity) measured under 1 sun AM1.5G irradiation for the $Ag|MoO_3+spiro-OMeTAD|AgBiS_2|ZnO|ITO$ devices (aperture 0.16 cm⁻²) with the light harvester layer spray-deposited at 150 °C for different number of deposition cycles.

Table S6. Photovoltaic performance^a of the planar Ag|MoO₃+spiro-OMeTAD|AgBiS₂|ZnO|ITO solar cells with the light absorber layer obtained with different number of spraying cycles at $T_{\text{dep}} = 150 \,^{\circ}\text{C}$.

Number of deposition cycles ^b		$V_{ m oc}\left({ m mV} ight)$	$J_{\rm SC}$ (mA cm ⁻²)	FF (%)	PCE (%)
10	SC to OC ^c	187 ± 6	14.2 ± 0.2	32.2 ± 0.4	0.87 ± 0.05
10	OC to SC ^c	184 ± 5	13.9 ± 0.4	31.8 ± 0.5	0.85 ± 0.06
1.1	SC to OC	222 ± 7	15.1 ± 0.6	33.0 ± 0.4	1.11 ± 0.08
11	OC to SC	221 ± 4	14.6 ± 0.7	32.7 ± 0.5	1.08 ± 0.05
12	SC to OC	241 ± 7	18.1 ± 0.6	34.6 ± 0.5	1.50 ± 0.12
12	OC to SC	239 ± 4	17.9 ± 0.5	34.4 ± 0.2	1.46 ± 0.07
13	SC to OC	253 ± 4	16.8 ± 0.4	34.1 ± 0.3	1.41 ± 0.05
13	OC to SC	251 ± 5	16.7 ± 0.3	33.7 ± 0.4	1.39 ± 0.06
14	SC to OC	290 ± 3	9.9 ± 0.3	32.1 ± 0.5	0.92 ± 0.03
	OC to SC	287 ± 4	9.8 ± 0.4	31.9 ± 0.4	0.90 ± 0.04
16	SC to OC ^c	345 ± 5	6.3 ± 0.5	35.0 ± 0.3	0.75 ± 0.05
	OC to SC ^d	342 ± 5	5.9 ± 0.6	34.4 ± 0.5	0.70 ± 0.07
10	SC to OC ^c	434 ± 4	3.3 ± 0.7	42.1 ± 0.4	0.58 ± 0.06
18	OC to SC ^d	431 ± 5	3.3 ± 0.5	41.9 ± 0.4	0.57 ± 0.05

^a Derived from the *J-V* curves (sweep rate 100 mV s⁻¹) for 10 devices of each type with an aperture of 0.16 cm²; V_{oc} - open circuit voltage, J_{sc} - short circuit current density, FF - fill factor, PCE - power conversion efficiency. ^b Solar cells fabricated by varying number of spraying cycles of AgBiS₂. ^c Mean values and standard deviations derived from measurements from short-circuit (SC) to open-circuit (OC) and in the opposite direction (OC to SC).

Figure S14. Dependence of (a) short-circuit current density and (b) open-circuit voltage for the $Ag|MoO_3+spiro-OMeTAD|AgBiS_2|ZnO|ITO$ solar cells ($T_{dep}=150\,^{\circ}C$; 12 spray cycles) on irradiation intensity (P). Solid lines show linear approximations to the experimental data. In panel \mathbf{b} , the ideality factor n is calculated by the equation for free carrier transport proposed by Koster et al. S_3 , S_4

Figure S15. Evolution of the photovoltaic parameters of a non-encapsulated $Au|MoO_3+spiro-OMeTAD|AgBiS_2|ZnO|ITO$ device stored on air under diffuse light for 1 month. The $AgBiS_2$ film was spray-deposited at 150 °C. Data were derived from J-V curves (scan rate 100 mV s⁻¹) recorded from short circuit to open circuit under 1 sun AM1.5G irradiation. Starting parameter values were V_{OC} =250 mV, J_{SC} = 17.6 mA cm⁻², FF = 33.8 %, PCE = 1.49 %.

SUPPLEMENTARY REFENRECES

- S1. Shu, Y.; Mikosch, A.; Winzenberg, K. N.; Kemppinen, P.; Easton, C. D.; Bilic, A.; Forsyth, C. M.; Dunn, C. J.; Singh, T.; Collis, G. E., N -Alkyl functionalized barbituric and thiobarbituric acid bithiophene derivatives for vacuum deposited n-channel OFETs. *J. Mater. Chem. C* **2014**, *2*, 3895-3899.
- S2. Bernechea, M.; Miller, N.; Xercavins, G.; So, D.; Stavrinadis, A.; Konstantatos, G., Solution-processed solar cells based on environmentally friendly AgBiS₂ nanocrystals. *Nat. Photon.* **2016**, *10*, 521-525.
- S3. Koster, L. J. A.; Mihailetchi, V. D.; Ramaker, R.; Blom, P. W. M., Light intensity dependence of open-circuit voltage of polymer: fullerene solar cells. *Appl. Phys. Lett.* **2005**, *86*, 123509.
- S4. Proctor, C. M.; Kuik, M.; Nguyen, T.-Q., Charge carrier recombination in organic solar cells. *Prog. Polym. Sci.* **2013,** *38,* 1941-1960.