Supplementary Information for

Thiol-ene Click Chemistry : A Modular Approach to Solid-State Triplet-Triplet Annihilation Upconversion

Abagail K. Williams, Brad J. Davis, Erin R. Crater, Joseph R. Lott, Yoan C. Simon and Jason D. Azoulay^{*}

School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, Mississippi 39406, United States.

Figure S4. ¹³C NMR (CDCl₃, 151 MHz) spectra of 2.

Figure S5. Absorbance (a) and fluorescence (b) spectra of the thiol functionalized DPA derivative (2) and unmodified 9,10-diphenylanthracene.

Analysis of DPA Concentration in Films

Figure S6. Absorbance spectra of thiol-ene film with 0.25 wt% DPA. The absorbance at 376 nm is used to calculate the DPA concentration.

Figure S7. Absorbance values recorded for DPA CHCl₃ solutions at 376 nm. The extinction coefficient calculated using Beers-Lamberts law is shown.

$$c_{DPA} = \frac{A}{\varepsilon_{DPA} * l} = \frac{2.5}{12,500 \ cm^{-1} \ M^{-1} \times 0.0265 \ cm} = 0.0075 \ M \tag{Eq. S1}$$

$$wt\% DPA = \frac{c_{DPA} * MW_{DPA}}{D_{film}} \times 100 = \frac{0.0075 M * 330.42 g mol^{-1}}{1000 g L^{-1}} \times 100$$

$$= 0.249 wt\% DPA$$
(Eq. S2)

Leeching Experiments

To confirm the covalent attachment of 2in the thiol-ene networks, films were submerged in CHCl₃ for 24 h and the supernatant was analyzed using UV-vis spectroscopy. Beer-Lambert law was used to calculate the % DPA from the film that leeched into the solution.

Nominal	Wt. of	Theoretical	Absorbance of	Calculated	Calculated Weight	% DPA
DPA Conc.	Film	Wt. of DPA in	Supernatant at	DPA Conc. in	of DPA in solution	leeched in
(wt%)	(g)	film (mg)	376 nm	solution (M)	(mg)	solution ^a
0.25	0.0735	0.18	0.003	2.40E-07	0.002	1.1
0.5	0.1232	0.62	0.025	2.99E-06	0.017	2.7
1.0	0.1442	1.4	0.021	1.68E-06	0.014	0.96
1.8	0.1108	1.9	0.034	2.72E-06	0.022	1.2
2.5	0.1394	3.5	0.062	4.96E-06	0.041	1.2
5.0	0.1196	6.0	0.186	1.49E-05	0.123	2.1

Table S1. Data used to calculate the % DPA that leeched out of the thiol-ene films.

^a The % DPA leeched into solution = Calculated weight of DPA in solution / theoretical weight of DPA in the film

Analysis of PdOEP Concentration in Films

Figure S8. Absorbance spectra of thiol-ene films that were submerged in $CHCl_3$ solutions containing a) 0.038, b) 0.075, and c) 0.15 mg mL⁻¹ PdOEP.

Figure S9. Absorbance values recorded for PdOEP CHCl₃ solutions at 546 nm. The extinction coefficient calculated using Beers-Lamberts law is shown.

$$c_{PdOEP} = \frac{A}{\varepsilon_{PdOEP} * l} = \frac{0.35}{44500 \ cm^{-1} \ M^{-1} \times 0.0265 \ cm} = 0.00030 \ M$$
(Eq. S3)
$$wt\% \ PdOEP = \frac{c_{PdOEP} * MW_{PdOEP}}{D_{film}} \times 100 = \frac{0.00030 \ M * 639.18 \ g \ mol^{-1}}{1000 \ g \ L^{-1}} \times 100$$
$$= 0.0190 \ wt\%$$

PdOEP Solution	DPA Concentration	Absorbance	PdOEP Concentration	PdOEP Concentration
Concentration (mg mL ⁻¹)	(wt%)	at 546 nm	in Film (M)	in Film (wt%)
	0.25	0.12	9.9E-05	0.005
0.038	0.5	0.11	9.1E-05	0.005
	1.0	0.10	8.7E-05	0.005
	1.8	0.11	9.0E-05	0.005
	2.5	0.11	9.0E-05	0.005
	5.0	0.15	1.3E-04	0.007
	0.25	0.19	1.6E-04	0.09
	0.5	0.21	1.7E-04	0.09
0.075	1.0	0.23	1.9E-04	0.01
0.075	1.8	0.23	1.9E-04	0.01
	2.5	0.22	1.8E-04	0.01
	5.0	0.21	1.7E-04	0.01
	0.25	0.35	3.0E-04	0.02
	0.5	0.41	3.5E-04	0.02
0.15	1.0	0.46	3.9E-04	0.02
	1.8	0.42	3.5E-04	0.02
	2.5	0.39	3.3E-04	0.02
	5.0	0.42	3.6E-04	0.02

Table S2. Data used to calculate the PdOEP concentrations in the thiol-ene films.

Figure S10. Calculated wt% PdOEP infused into thiol-ene films as a function of the PdOEP concentration in the CHCl₃ solution the films were submerged in.

Direct Fluorescence of PdOEP doped Films

Figure S11. Direct fluorescence emission spectra of thiol-ene networks doped with a) 0.005, b) 0.01, and c) 0.02 wt% PdOEP ($\lambda_{ex} = 375$ nm).

Figure S12. Photoluminescence emission from PdOEP doped thiol-ene films comprised of a) 0.25, b) 0.5, c) 1.0, d) 1.8, e) 2.5, and f) 5.0 wt% DPA ($\lambda_{ex} = 544$ nm). A break from 520 to 630 nm is included to exclude the excitation peak for clarity.

Figure S13. Photoluminescence emission from PdOEP doped thiol-ene films comprised of 1.0 wt% DPA ($\lambda_{ex} = 544 \text{ nm}$).

Figure S14. Integrated upconverted emission (a) and phosphorescence (b) intensities normalized by the absorbance from thiol-ene films with various PdOEP concentrations as a function of DPA concentration.