Supplementary Information

Chiroptical Property of TPE Triangular Macrocycle Crown Ethers from Propeller-Like Chirality Induced by Chiral Acids

Wei-Guo Qiao,^a Jia-Bin Xiong,^a Ying-Xue Yuan,^a Hong-Chao Zhang,^a Dong Yang,^b Minghua Liu^b and Yan-Song Zheng^{*a}

^a Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China. zyansong@hotmail.com

^b Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Table of Contents

Fig. S1–S28. The characterization spectra of compounds 2–8	2-15
Fig. S29. The fluorescence spectra and photos of powders of 6 and 8	16
Fig. S30. UV-Vis spectra of compound 6 and 8	16
Fig. S31. CD spectra of a solution of macrocycle-chiral acid complex	17
Fig. S32. FE-SEM images of film of 6, 6-D-10 mixture and 6-L-10 mixture	18
Fig. S33. CD spectra of the films of 8 -chiral acid complex	19
Fig. S34. CD spectra of a solution of 5 and 7 with acid	20
Fig. S35. ¹ H NMR spectra of 9 , (<i>R</i>)- 9-6 complex and 6	21

The characterization spectra of compounds 2-8.

Fig. S1. ¹H NMR spectrum of compound 2 in CDCl₃.

Fig. S2. ¹³C NMR spectrum of compound 2 in CDCl₃.

Fig. S3. IR spectrum of compound 2.

Fig. S4. HRMS spectrum of compound 2.

Fig. S5. ¹H NMR spectrum of compound 3 in CDCl₃.

Fig. S6. ¹³C NMR spectrum of compound **3** in CDCl₃.

Page 1/1

Fig. S8. HRMS spectrum of compound 3.

Fig. S9. ¹H NMR spectrum of compound 4 in CDCl₃.

Fig. S10. ¹³C NMR spectrum of compound 4 in CDCl₃.

Fig. S11. IR spectrum of compound 4.

Fig. S12. HRMS spectrum of compound 4.

Fig. S13. ¹H NMR spectrum of compound 6 in CDCl₃.

Fig. S14. ¹³C NMR spectrum of compound 6 in CDCl₃.

Page 1/1

Meas.m/z # Formula Score m/z err [ppm] Mean err [ppm] mSigma rdb e Conf N-Rule

Fig. S16. HRMS spectrum of compound 6.

Fig. S17. ¹H NMR spectrum of compound 5 in CDCl₃.

Fig. S18. ¹³C NMR spectrum of compound 5 in CDCl₃.

Fig. S19. IR spectrum of compound 5.

Fig. S20. HRMS spectrum of compound 5.

Fig. S21. ¹H NMR spectrum of compound 7 in CDCl₃.

Fig. S22. ¹³C NMR spectrum of compound 7 in CDCl₃.

Fig. S23. IR spectrum of compound 7.

Fig. S24. HRMS spectrum of compound 7.

Fig. S25. ¹H NMR spectrum of compound 8 in CDCl₃.

Fig. S26. ¹³C NMR spectrum of compound 8 in CDCl₃.

Fig. S28. HRMS spectrum of compound 8.

Fig. S29. The normalized fluorescence spectra of 6 (A) and 8 (B) in 90:10 H_2O/THF (V/V) suspension and in dry solid, respectively. (C) Photos of powders of 6 (left) and 8 (right) under a 365 nm portable UV lamp.

Fig. S30. UV-Vis spectra of compound 6 and 8 in THF. $[6] = [8] = 1.0 \times 10^{-5} \text{ M}.$

Fig. S31. CD spectra of a solution of macrocycle **6** (A, B and C) and **8** (D, E and F) with enantiomer of chiral acid in 1,2-dichloroethane. [**6**] = [8] = 1/3[chiral acid] =2.0×10⁻⁴ M.

Fig. S32. FE-SEM images of film of **6** (A), **6**-*D*-**10** mixture and **6**-*L*-**10** mixture in 1,2-dichloroethane. The measurement sample was prepared by droping the solution onto one glass slide and air dried.

Fig. S33. CD spectra of the films of macrocycle **8** mixed with enantiomer of chiral acid. Preparation: The film was prepared by droping the solution of **8** and 3 equivalents of chiral acid enantiomer in 1,2-dichloroethane onto one glass slide and air dried.

Fig. S34. CD spectra of a solution of intermediate **5** (A, B and C) and **7** (D, E and F) with enantiomer of chiral acid in 1,2-dichloroethane. [5] = [7] = 1/3[chiral acid] = 2.0×10^{-4} M.

Fig. S35. ¹H NMR spectra of (*R*)-mandelic acid 9 (a), a mixture of (*R*)-9 and macrocycle 6 (b) and macrocycle 6 (c) in CDCl_3 . [9] = [6] = 5 mM.