K₂NaAlF₆:Mn⁴⁺ red phosphor: Room-temperature synthesis

and electronic/vibronic structures

Xiaodong Yi,^{a,b} Renfu Li, ^a Haomiao Zhu,^{a,b,c*} Jun Gao,^a Wenwu You,^a Zhongliang Gong,^a

Wang Guo,^a Xueyuan Chen^{a,b*}

*Corresponding authors: zhm@fjirsm.ac.cn, xchen@fjirsm.ac.cn.

Figure S1 X-ray diffraction patterns of synthesized pure K_2NaAlF_6 crystal and $K_2NaAlF_6:Mn^{4+}$ crystals with various Mn^{4+} doping concentrations of 0.20, 0.48, 0.94, 2.31, 3.52 and 4.78 at.%, respectively. All the patterns match well with the standard pattern of tetragonal-phase K_2NaAlF_6 crystal (JCPDS No. 22-1235) with the space group of $Fm\overline{3}m$.

Figure S2 Mn-2p core-level X-ray photoelectron spectra (XPS) for $2p_{1/2}$ and $2p_{3/2}$ of Mn³⁺ and Mn⁴⁺ ions in the K₂NaAlF₆:Mn⁴⁺ (2.31 at.%) sample. The smooth solid lines represent the fitted lines. The results show that both Mn³⁺ and Mn⁴⁺ ions exist in the K₂NaAlF₆ host.

Figure S3 Temperature-dependent PL spectra at 10-300 K for the $K_2NaAlF_6:Mn^{4+}$ (2.31 at.%) sample.

Figure S4 Temperature-dependent PL decays at 10-300 K from the ${}^{2}E$ state of the K₂NaAlF₆:Mn⁴⁺ (2.31 at.%) sample.

Figure S5 Temperature-dependent PL spectra at 25-150 °C for the $K_2NaAlF_6:Mn^{4+}$ (2.31 at.%) sample.

Supplementary Discussion.

Calculation of crystal field parameters of D_q , B, C. The values of D_q , B and C can be calculated based on experimentally determined energy levels using the following equations^{1, 2}:

$$E({}^{4}T_{2} - {}^{4}A_{2}) = 10D_{q'}$$
(1)

$$\frac{B}{D_q} = \frac{(\Delta E/D_q)^2 - 10(\Delta E/D_q)}{15(\Delta E/D_q - 8)},$$
(2)

$$E(^{2}\mathrm{E}^{-4}\mathrm{A}_{2}) = 9B + 3C - 90B^{2}/10D_{q'}$$
(3)

Where ΔE represents the energy difference between ${}^{4}T_{1}$ and ${}^{4}T_{2}$. The energies of ${}^{4}T_{1}$, ${}^{4}T_{2}$ and ${}^{2}E$ were experimentally determined to be 28023 cm⁻¹, 21824 cm⁻¹ and 16067 cm⁻¹, respectively. From equations (1)-(3), the value of D_{q} , B, C were calculated to be 2182 cm⁻¹, 573 cm⁻¹ and 4088 cm⁻¹, respectively.

Calculation of energies of ${}^{2}T_{1}$ **and** ${}^{2}A_{1}$ **states.** Once the values of D_{q} , B and C have been determined, the energies of ${}^{2}T_{1}$ and ${}^{2}A_{1}$ states can be determined by the following equations:

$$E(^{2}T_{1}-^{2}E) = 66B^{2}/(10D_{q}),$$
(4)

$$E^{(2}A_{1}-^{4}A_{2}) = 10D_{q} + 4B + 3C,$$
(5)

The calculated values of energies of ${}^{2}T_{1}$ and ${}^{2}A_{1}$ are 17060 cm⁻¹ and 36376 cm⁻¹, respectively.

Supplementary References

- 1. B. Henderson and G. F. Imbusch, *Optical spectroscopy of inorganic solids*, Oxford university Press, 1989.
- 2. M. J. Reisfeld, N. A. Matwiyoff and L. B. Asprey, J. Mol. Spectrosc., 1971, 39, 8-20.