Supplementary Information

$Er^{3+}\!/Yb^{3+}$ codoped phosphor $Ba_3Y_4O_9$ with intense red upconversion emission and optical temperature sensing behavior

Hao Wu,^{a,b} Zhendong Hao,^{a*} Liangliang Zhang,^a Xia Zhang,^a Yu Xiao,^{a,b} Guo-Hui Pan,^a Huajun Wu,^a Yongshi Luo,^a Ligong Zhang^a and Jiahua Zhang^{a*}

^a State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China

^b University of Chinese Academy of Sciences, Beijing, 100049, China

Corresponding author*

Email: haozd@ciomp.ac.cn; zhangjh@ciomp.ac.cn

Fig. S1 X-ray diffraction patterns of Y_2O_3 and β -NaYF₄ with particular Er³⁺, Yb³⁺ doped or codoped concentration. The standard patterns are also presented as references.

Evaluating emission efficiency of ⁴F_{9/2} level and radiative lifetime in Ba₃Y₄O₉.

The PL spectra of Ba₃Y₄O₉ and Y₂O₃ with the singly 0.1%Er³⁺ doped concentration were recorded under 650nm excitation in **Figure 5a**, and the full spectra shape of red emission are also presented (red dashed line). We simplify the scheme of possible decay pathways by assuming that ⁴I_{9/2} level can rapidly and completely relax down to ⁴I_{11/2} level by multiphonon-relaxation (MPR) due to the small energy gap of ~2200cm⁻¹. There is no MPR process from ⁴I_{13/2} level due to the large energy gap ~6500cm⁻¹, which is five times larger than the maximum phonon energy in oxide hosts. According to the previously reported radiative branch ratios from ⁴F_{9/2} to various lower states of Er³⁺ in various hosts,^{1-15 4}F_{9/2}→⁴I_{15/2} is the dominant radiative transition with the branch ratio around 91% ($\beta_{40}\approx 0.91$), while the others ⁴F_{9/2}→⁴I_{13/2} ($\beta_{41}\approx 0.05$) and ⁴F_{9/2}→⁴I_{11/2} ($\beta_{41}\approx 0.04$) can be nearly neglected. Under direct excitation to ⁴F_{9/2} at 650nm, the set of rate equations are expressed below using the model portrayed in **Figure 5b**:

$$\frac{dn_4}{dt} = \sigma_4 \Phi_{650} n_0 - \alpha_4 n_4 - W_4 n_4$$
(S1)

$$\frac{dn_3}{dt} = \alpha_{43}n_4 + W_4n_4 - W_3n_3$$
(S2)

$$\frac{dn_2}{dt} = \alpha_{42}n_4 + W_3n_3 - \alpha_2n_2 - W_2n_2$$
(S3)

$$\frac{dn_1}{dt} = \alpha_{41}n_4 + \alpha_{21}n_2 + W_2n_2 - \alpha_1n_1$$
(S4)

$$1 = \sum \beta_{ij} \quad (i > j) \tag{S5}$$

$$\alpha_{ij} = \alpha_i \beta_{ij} \tag{S6}$$

where n_i is the population of level *i*, σ_4 is the absorption cross section of ${}^4F_{9/2}$, and Φ_{650} is the excitation photon flux. The β_{ij} is the branching ratio from the *i*th level to the *j*th level. The α_i and W_i represent the radiative rate and MPR rate of *i*th level, respectively. Considering the low efficiency of red emission in oxide and the largest radiative branch ratios of ${}^4F_{9/2} \rightarrow {}^4I_{15/2}$ transition, the contribution of radiative transition from ${}^4F_{9/2}$ to each intermediate states can be ignored. Furthermore, the PL spectra were measured by continuous wave (CW) excitation, thus the steady state equations are expressed as:

$$\sigma_4 \Phi_{650} n_0 = \alpha_4 n_4 + W_4 n_4 \tag{S7}$$

$$W_4 n_4 = W_3 n_3 \tag{S8}$$

$$W_{3}n_{3} = \alpha_{2}n_{2} + W_{2}n_{2} \tag{S9}$$

$$\alpha_1 n_1 = \alpha_{21} n_2 + W_2 n_2 \tag{S10}$$

The PL intensity (I) is proportional to the product of radiative rate and the population of emitting state:

$$\mathbf{I}_{ij} \propto \alpha_{ij} \mathbf{n}_i \tag{S11}$$

where I_{ij} is transition integrated intensity from the *i*th level to the *j*th level. Further, the ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ and ${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$ transition intensity ratio can be expressed as:

$$\frac{I_{10}}{I_{20}} = \frac{(\alpha_{21}n_2 + W_2n_2)}{\alpha_{20}n_2} \times R_{1500/1000} = \left(\frac{\beta_{21}}{\beta_{20}} + \frac{W_2}{\alpha_2\beta_{20}}\right) \times R_{1500/1000}$$
(S12)

where, $R_{1500/1000}$ is the coefficient for detector response and transition frequency ratio of 1500nm to 1000nm. According to the theoretical calculation of different Er^{3+} doped hosts previously (**Table S1**), the branching ratio of ${}^{4}I_{11/2}$ and ${}^{4}F_{9/2}$ level in different host materials are approximately identical. Thus, we regard the average values of composite oxide as the branching ratio of ${}^{4}I_{11/2}$ and ${}^{4}F_{9/2}$ level in Ba₃Y₄O₉. Taking Y₂O₃ sample as a reference, the evaluated radiative lifetime and luminescence efficiency of ${}^{4}I_{11/2}$ level were obtained using the equation:

$$\eta_i = \frac{\tau_i}{\tau_{ir}} = \frac{\alpha_i}{\alpha_i + W_i}$$
(S13)

where η_i is the luminescence efficiency of *i*th level, τ_i is the experimental lifetime (τ_{exp}) and τ_{ir} is the calculated radiative lifetime (τ_{cal}) or evaluated radiative lifetime (τ_{eva}).

Moreover, the ${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$ and ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ transition intensity ratio can be expressed as:

$$\frac{I_{20}}{I_{40}} = \frac{\alpha_{20}W_4n_4/(\alpha_2 + W_2)}{\alpha_{40}n_4}R_{1000/650} = \frac{W_4}{\alpha_4\beta_{40}} \times \eta_2 \times \beta_{20} \times R_{1000/650}$$
(S14)

where $R_{1000/650}$ is the coefficient for detector response and transition frequency ratio of 1000nm to 650nm. Taking Y_2O_3 sample as a reference, the evaluated radiative lifetime and luminescence efficiency of ${}^4F_{9/2}$ were obtained using **Equation S13** and the detailed parameters are listed in **Table S2,3**.

	$\beta_{21}(\%)$	$\beta_{20}(\%)$	$\beta_{43}(\%)$	$\beta_{42}(\%)$	$\beta_{41}(\%)$	$\beta_{40}(\%)$	Ref
K ₂ YF ₅	28.7	71.3	0.2	3.9	4.2	91.7	1
β-NaYF ₄	16.2	83.8	0.6	8.4	3.8	87.2	2
KPb ₂ Cl ₅	18.4	81.6	0	3.8	4.2	92.0	3
CaGdAlO ₄	15.8	84.2	0.3	3.8	4.4	91.5	4
$ErBa_3B_9O_{18}$	13	87	0	6	4	90	5
Y_2O_3	10.8	89.2	2.1	0.8	4.8	92.3	6
$CaSc_2O_4$	18.7	81.2	0.3	3.7	4.8	91.2	7
Gd_2SiO_5	16.1	83.9	0.2	3.8	4.8	91.2	8
$KGd(WO_4)_2$	20.4	79.6	0.7	5.7	5.5	88.1	9
$Li_2Gd_4(MoO_4)_7$	13.7	86.3	0.8	4.1	5.8	89.3	10
Sr ₃ Y(BO ₃) ₃	21.6	78.4	0.2	2.8	4.5	92.5	11
Y_2O_2S	13.5	86.5	0.2	5.1	4.6	90.1	12
YAG	-	-	0.1	6.8	3.3	89.8	13
YAl ₃ (BO ₃) ₄	12.9	87.1	0.2	4.1	4.5	91.2	14
YAlO ₃	14.5	85.5	0.2	4.3	4.0	91.5	15
Oxide mean	15.5	84.5	0.4	4.3	4.6	90.7	

Table S1. Comparison of branching ratio reported for ${}^{4}I_{11/2}$ and ${}^{4}F_{9/2}$ level of Er^{3+} in different host materials.

Table S2. The detailed parameters for evaluating radiative lifetime and luminescence efficiency of ${}^{4}I_{11/2}$ level in $Ba_{3}Y_{4}O_{9}$.

0.1%Er	β ₂₁ (%)	β ₂₀ (%)	τ _{rad} (ms)	τ _{exp} (ms)	I_{10}/I_{20}	τ _{eva} (ms)	η2(%)
Ba ₃ Y ₄ O ₉	~15.5 ^{a)}	~84.5 ^{a)}	-	1.852	$1.29I_{1/2}^{b)}$	4.700	39.66
Y_2O_3	10.8	89.2	6.032	2.669	$I_{1/2}^{b}$	-	44.25

^{a)} Using the average values of composite oxide in **Table S1**.

^{b)} $I_{1/2}$ represents the ${}^4I_{13/2} \rightarrow {}^4I_{15/2}$ and ${}^4I_{11/2} \rightarrow {}^4I_{15/2}$ transition intensity ratio in $Y_2O_3: 0.1\% Er^{3+}$

Table S3. The detailed parameters for evaluating radiative lifetime and luminescence efficiency of ${}^{4}F_{9/2}$ level in Ba₃Y₄O₉.

0.1%Er	β ₄₀ (%)	$\tau_{rad}(\mu s)$	$\tau_{exp}(\mu s)$	I ₂₀ /I ₄₀	$\tau_{eva}(\mu s)$	η4(%)
Ba ₃ Y ₄ O ₉	~90.7 ^{a)}	-	31.61	$0.66I_{2/4}^{b)}$	879.28	3.595
Y_2O_3	92.3	737.53	20.33	$I_{2/4}^{b)}$	-	2.756

^{a)} Using the average values of composite oxide in **Table S1**.

^{b)} $I_{2/4}$ represents the ${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$ and ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ transition intensity ratio in $Y_2O_3: 0.1\% Er^{3+}$

References

- P. A. Loiko, E. V. Vilejshikova, N. M. Khaidukov, M. N. Brekhovskikh, X. Mateos, M. Aguiló, K. V. Yumashev, *J. Lumin.*, 2016, **180**, 103.
- [2] G. Yao, C. Lin, Q. Meng, P. S. May, M. T. Berry, J. Lumin., 2015, 160, 276.
- [3] N. W. Jenkins, S. R. Bowman, S. O'Connor, S. K. Searles, J. Ganem, *Opt. Mater.*, 2003, 22, 311.
- [4] J. H. Huang, X. H. Gong, Y. J. Chen, Y. F. Lin, Z. D. Luo, Y. D. Huang, J. Alloy. Compd., 2014, 585, 163.
- [5] M. He, T. Liu, J. Xiu, Y. Tang, Z. Zhang, J. Spectrosc., 2015, 871320.
- [6] D. K. Sardar, K. L. Nash, R. M. Yow, G. B. Gruber, J. Appl. Phys., 2007, 101, 113115.
- [7] Ş. Georgescu, A. Ştefan, O. Toma, J. Lumin., 2015, 167, 186.
- [8] X. Xu, G. Zhao, F. Wu, W. Xu, Y. Zong, X. Wang, Z. Zhao, G. Zhou, J. Xu, J. Cryst. Growth., 2008, 310, 156.
- [9] M. C. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikolov, X. Solans, M. Aguiló, F. Díaz, *Appl. Phys. B-Lasers O.*, 1999, 68, 187-197.
- [10] W. Zhao, L. Zhang, G. Wang, J. Cryst. Growth., 2009, 311, 2336.
- [11] D, Zhao, G, Wang, J. Lumin., 2010, 130, 424.
- [12] S. Buddhudu, F. J. Bryant, J. Less-Common Met., 1989, 147, 213.
- [13] D. K. Sardar, W. M. Bradley, J. J. Perez, J. B. Gruber, B. Zandi, J. A. Hutchinson,
- C. W. Trussell, M. R. Kokta, J. Appl. Phys., 2003, 93, 2602.
- [14] H. Jiang, J. Wang, X. Hu, H. Liu, X. Y. Liu, Chem. Phys. Lett., 2002, 365, 279.
- [15] Q. Dong, G. Zhao, D. Cao, J. Chen, Y. Ding, J. Alloy. Compd., 2010, 493, 661.