Fluorination increases the electron mobility of zinc azadipyrromethene-based electron acceptors and enhances performance of fullerene-free organic solar cells

Sandra Pejić, Anna M. Thomsen, Forrest S. Etheridge, Roshan Fernando, Chunlai Wang, Geneviève Sauvé*

*Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America

*E-mail: <u>gxs244@case.edu</u>

Table of Contents

Characterization of $Zn(WS3)_2 - Zn(L4)_2$	3
Additional atomic force microscopy (AFM) images	9
References	.12

Characterization of Zn(WS3)₂ – Zn(L4)₂

Figure S1. Zinc azadipyrromethene chelates $(Zn(WS3)_2)$ and they fluorine derivations $(Zn(L1)_2 - Zn(L4)_2)$.

Figure S2. ¹H NMR of $Zn(L1)_2(1)$.

Figure S3. ¹H NMR of Zn(L2)₂ (1).

Figure S4. ¹H NMR of $Zn(L3)_2(1)$.

Figure S5. ¹H NMR of Zn(L4)₂ (1).

Table S1. Elemental analysis of Zn(L1)₂ (1).

	Theoretical	Found	Difference
Carbon	80.36	80.58	0.22
Hydrogen	3.93	4.08	0.15
Nitrogen	5.86	5.89	0.03

Table S2.	. Elemental	analysis	of Z	$2n(L2)_2$	(1).
-----------	-------------	----------	------	------------	------

	Theoretical	Found	Difference
Carbon	80.36	80.19	0.17
Hydrogen	3.93	4.04	0.11
Nitrogen	5.86	5.78	0.08

Table S3. Elemental analysis of Zn(L3)₂ (1).

	Theoretical	Found	Difference
Carbon	80.36	80.13	0.23
Hydrogen	3.93	4.09	0.16
Nitrogen	5.86	5.69	0.17

Table S4. Elemental analysis of Zn(L4)₂ (1).

	Theoretical	Found	Difference
Carbon	73.46	73.42	0.04
Hydrogen	3.45	3.69	0.14
Nitrogen	5.14	5.06	0.08

Table S5. Electrochemical properties of $Zn(WS3)_2 - Zn(L4)_2$ in dichloromethane. All reported values are in V *vs.* Fc/Fc⁺(1).

	E _{1/2 ox.}	E _(p,a)	E _{1/2 red.}	E _(p,c)
Zn(WS3) ₂	0.50, 0.77	0.58, 0.86	-1.25, -1.47	-1.33, -1.55
$Zn(L1)_2$	0.60, 0.78	0.66, 0.87	-1.16, -1.39	-1.11, -1.33
$Zn(L2)_2$	0.54, 0.73	0.58, 0.81	-1.24, -1.45	-1.19, -1.41
$Zn(L3)_2$	0.56, 0.79	0.61, 0.86	-1.23, -1.44	-1.18, -1.39
$Zn(L4)_2$	0.61, 0.84	0.66, 0.88	-1.15, -1.36	-1.11, -1.32

Figure S2. Cyclic voltamograms of $Zn(WS3)_2 - Zn(L4)_2$ in 0.1 M TBAPF₆ dichloromethane solution with Fc/Fc⁺ as an internal standard ($E_{1/2}$ at 0.0 V) (1).

Figure S3. UV-vis absorption spectra of blended P3HT:Acceptor films. Ratios and concentrations vary to match optimized photovoltaic active layers.

Additional atomic force microscopy (AFM) images

Figure S8. Atomic force microscopy 1 x 1µm height images of blend films of a) P3HT: PCBM b) P3HT: Zn(WS3)₂ c) P3HT:Zn(L1)₂ d) P3HT:Zn(L2)₂ e) P3HT:Zn(L3)₂ f) P3HT:Zn(L4)₂.

Figure S9. Atomic force microscopy 10 x 10µm height images of blend films of a) P3HT: PCBM b) P3HT: Zn(WS3)₂ c) P3HT:Zn(L1)₂ d) P3HT:Zn(L2)₂ e) P3HT:Zn(L3)₂ f) P3HT:Zn(L4)₂.

Figure S10. Atomic force microscopy 10 x 10 μ m phase images of blend films of a) P3HT: PCBM b) P3HT: Zn(WS3)₂ c) P3HT:Zn(L1)₂ d) P3HT:Zn(L2)₂ e) P3HT:Zn(L3)₂ f) P3HT:Zn(L4)₂.

References

1. Etheridge FS, Fernando RJ, Pejic S, Zeller M, Sauve G. Synthesis and characterization of fluorinated azadipyrromethene complexes as acceptors for organic photovoltaics. *Beilstein J Org Chem*. 2016;12:1925-38.