Sensitization of near-infrared Ln^{III} [Ln = Yb or Nd] ions using water-soluble, band gap tuneable 3-MPA capped CdS nanoparticles

Ana de Bettencourt-Dias,* Rodney A. Tigaa

Department of Chemistry, University of Nevada, Reno, NV 89557-216, U. S. A.

Table of Contents

1 EDX and TEM	.2
2 FT-IR	.2
3 Determination of the optimum Ln ^{III} /NP ratio	.3
4 Powder XRD of the NPs and their Ln ^{III} -containing systems	.4
5 Excitation and emission spectra of the LnCl ₃ and Ln ^{III} -complexes of 3-MPA	.5

1 EDX and TEM

Sample	С%	0 %	S %	Cd %	Yb/Nd %
30 min NPs	43.53	36.40	12.54	7.54	
30 min NP-Yb	62.93	18.10	7.05	5.06	6.86
30 min NP-Nd	62.65	11.82	1.07	1.90	22.56
50 min NPs	65.39	11.00	12.89	10.72	
50 min NP-Yb	62.01	13.33	12.62	8.83	3.22
50 min NP-Nd	40.94	26.66	22.72	1.35	8.33
120 min NPs	65.00	16.24	18.29	0.47	
120 min NP-Yb	29.44	27.72	23.42	14.31	5.12
120 min NP-Nd	53.13	23.13	10.61	8.96	4.17

Table S1. Elemental composition by EDX of the 3-MPA-NPs and 3-MPA-Ln-NPs.

Table S2. Average sizes of the 3-MPA-NPs and their Ln^{III} systems 3-MPA-Ln-NPs determined from TEM measurements.

Sample	NP [nm]	Nd ^{III} -NP [nm]	Yb ^{III} -NP [nm]
30 min	3.5±0.2	3.9±0.3	4.0±0.6
50 min	3.1±0.3	3.7±0.5	3.3±0.2
120 min	3.6±0.6	3.7±0.4	4.2±0.1

2 FT-IR

Table S3. The vibrational energies of the symmetric (v_s) and asymmetric (v_{as}) carboxylate vibrations of the 3-MPA-NP and 3-MPA-LnNP systems.

CdS NPs	30 min [cm ⁻¹]	50 min [cm ⁻¹]	120 min [cm ⁻¹]
Na ^I -NPs	$v_{as} = 1554$	$v_{as} = 1554$	$v_{as} = 1556$
	$v_s = 1395$	$v_s = 1395$	$v_s = 1398$
Nd ^{III} -NP	$v_{as} = 1532$	$v_{as} = 1533$	$v_{as} = 1538$
	$v_s = 1405$	$v_s = 1402$	$v_s = 1408$
Yb ^{III} -NP	$v_{as} = 1538$	$v_{as} = 1541$	$v_{as} = 1538$
	$v_s = 1402$	$v_s = 1407$	$v_s = 1404$

3 Determination of the optimum Ln^{III}/NP ratio

b) λ [nm] Figure S1. a) Plot of Eu^{III} emission intensity at 615 nm as a function of added NPs and b) the corresponding emission spectra obtained in H₂O at 298 K.

4 Powder XRD of the 3-MPA-NP and 3-MPA-Ln-NP systems

Figure S2. Powder X-ray diffractograms of the a) 30, b) 50 and c) 120 min 3-MPA-NPs and 3-MPA-Ln-NPs.

5 Excitation and emission spectra of the $LnCl_3$ and $Ln^{\rm III}\text{-}complexes$ of 3-MPA

Figure S3. NIR Excitation and emission spectra of a) $LnCl_3$ and b) Ln^{III} -complexes of 3-MPA in D_2O obtained at 298 K. Ln = Nd (black lines) and Yb (red lines).