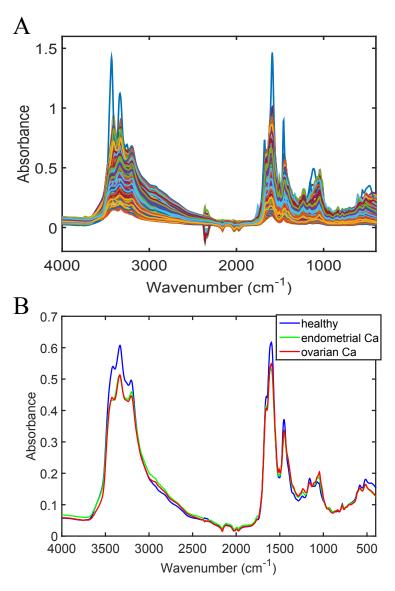
Supplementary Material

Potential of mid-infrared spectroscopy as a non-invasive diagnostic test for endometrial or ovarian cancer in urine

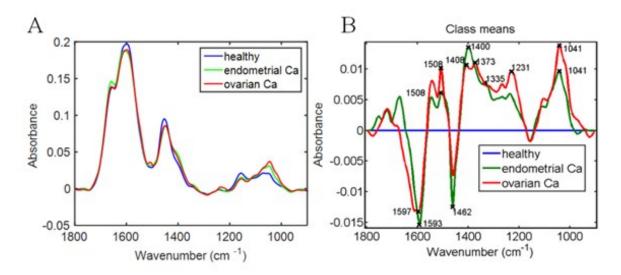
Maria Paraskevaidi^{a,1}, Camilo L.M. Morais^{a,b}, Kássio M.G. Lima^b, Katherine M. Ashton^c,

Helen F. Stringfellow^c, Pierre L. Martin-Hirsch^d and Francis L. Martin^{a,1}

^aSchool of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1


2HE, UK; ^bInstitute of Chemistry, Biological Chemistry and Chemometrics, Federal University

of Rio Grande do Norte, Natal 59072-970, Brazil; ^cPathology Department, Lancashire


Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK; ^dDepartment of Obstetrics and

Gynaecology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK

¹To whom correspondence should be addressed. Email: <u>mparaskevaidi@uclan.ac.uk</u> or <u>flmartin@uclan.ac.uk; Tel:</u> +44 (0) 1772 89 6482

Supplementary Fig. 1: A) Raw spectra for all samples analysed (healthy, endometrial and ovarian cancer). (B) Average raw spectrum for healthy, endometrial and ovarian cancer groups.

Supplementary Fig. 2: Pre-processed spectra (A); Top six peaks that were found responsible for the discrimination between endometrial and ovarian cancer from healthy individuals (B).

Supplementary Table 1: Correct classification (%) of training and test set using PLS-DA, PCA-SVM and GA-LDA algorithms.

Algorithm	Training set (%)	Test set (%)
PLS-DA	85.0	72.5
PCA-SVM	97.2	95.8
GA-LDA	95.0	90.0

PLS-DA: Partial Least Squares-Discriminant Analysis; PCA-SVM: Principal Component Analysis-Support Vector Machines; GA-LDA: Genetic Algorithm-Linear Discriminant Analysis