Electronic Supplementary Information (ESI)

Evaluation of the cooling/heating-assisted microextraction instrument using a needle trap device packed with aminosilica/graphene oxide nanocomposite, covalently attached to cotton

A.R. Ghiasvanda,[†], N. Heidari^a, S. Abdolhosseini^a, A. Hamdi^a, P.R. Haddad^b

^aDepartment of Chemistry, Lorestan University, Khoramabad, Iran ^aAustralian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia

Running title: Cooling/Heating-Assisted Microextraction Instrument (CHaME)

Keywords: Cooling/heating-assisted microextraction; Needle trap device; Aminosilica/graphene oxide/cotton composite; Contaminated soil; PAHs; GC-FID

Corresponding Author: Alireza Ghiasvand Address: Department of Chemistry, Lorestan University, Khoramabad, Iran E-mail: a_ghiasvand@yahoo.com Tel-Fax: + 98 6633120610-12 ORCID ID: 0000-0002-4570-7988

Table of Contents:

Fig. S-1 NTD temperature *vs.* the extracted amount of the PAHs using the CHaME-NTD-GC-FID procedure (desorption condition: 280 °C, 4 min; sample temperature: 130 °C; sampling flow rate: 28 mL min⁻¹; sampling time: 20 min).

Fig. S-2 The study of the extraction efficiency to variation of sampling flow rate on the extraction efficiency of the CHaME-NTD-GC-FID strategy, at constant sampling time (desorption condition: $280 \degree$, 4 min; sample temperature: $130 \degree$; NTD temperature: $5 \degree$; extraction time: 20 min).

Fig. S-3 Effect of extraction time on the extraction efficiency of the CHaME-NTD-GC-FID method (desorption condition: 280 °C, 4 min; extraction temperature: 130 °C; NTD temperature: 5 °C; sampling flow rate: 21 mL min⁻¹).

Table S-1 Analytical figures of merit for analysis of the PAHs in solid samples usingCAaME-NTD-GC-FID method.

Fig. S-1 NTD temperature *vs.* the extracted amount of the PAHs using the CHaME-NTD-GC-FID procedure (desorption condition: 280 °C, 4 min; sample temperature: 130 °C; sampling flow rate: 28 mL min⁻¹; sampling time: 20 min).

Fig. S-2 The study of the extraction efficiency to variation of sampling flow rate on the extraction efficiency of the CHaME-NTD-GC-FID strategy, at constant sampling time (desorption condition: 280 °C, 4 min; sample temperature: 130 °C; NTD temperature: 5 °C; extraction time: 20 min).

Fig. S-3 Effect of extraction time on the extraction efficiency of the CHaME-NTD-GC-FID method (desorption condition: 280 °C, 4 min; extraction temperature: 130 °C; NTD temperature: 5 °C; sampling flow rate: 21 mL min⁻¹).

Analyte	LOD (ng g ⁻¹)	Equation ^a	R2	RSD (%, n=6)	T-test value (f=4)	r
Nap	0.012	Y=288556.2x+1035.1	0.994	6.2	2.59	0.942
Ace	0.005	Y=1002056.3x+35195.0	0.997	7.2	2.82	0.998
Fln	0.017	Y=887590.6x+11754.6	0.996	9.8	2.82	0.998
Ant	0.013	Y=831773.5x+16495.3	0.996	8.9	2.79	0.993
Phe	0.038	Y=373130.9x+50919.5	0.992	8.1	2.81	0.995
Flt	0.036	Y=432474.3x+11958.9	0.995	7.4	2.81	0.997
Pyr	0.033	Y=255222.2x+27666.7	0.993	7.9	2.81	0.996

Table S-1 Analytical figures of merit for analysis of the PAHs in solid samples using CAaME-NTD-GC-FID method.

^aY: Peak area, x: Concentration (µg per g of solid sample)