Supporting Information for

A simple and sensitive detection of small molecule-protein interaction based on terminal protection-mediated exponential strand displacement amplification

By Chang Yeol Lee,^a Hyo Yong Kim,^a Soeun Kim,^a Ki Soo Park^{*b} and Hyun Gyu Park^{*a}

^aDepartment of Chemical and Biomolecular Engineering (BK 21+ program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon 34141, Republic of Korea ^bDepartment of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea

* To whom correspondence should be addressed.

E-mail: hgpark@kaist.ac.kr (H.G. Park); Phone: +82-42-350-3932; Fax: +82-42-350-3910. E-mail: kskonkuk@gmail.com (K.S. Park); Phone: +82-2-450-3742; Fax: +82-2-450-3742. **Table S1** Comparison of this method with previous terminal protection-based fluorescentmethods.

Key material/method	Target	Limit of detection (pM)	Total detection time (hr)	Limitations	Reference
Quantum dot and ruthenium complex	Biotin-SA	40	1.2	- Synthesis of chemicals and nanomaterials - Low sensitivity	1
Poly T-templated copper nanoparticles	Biotin-SA	100	0.42	- Low sensitivity	2
MoS ₂ nanosheet and Exo III-aided DNA recycling amplification	Biotin-SA	13	2	- Synthesis of nanomaterials - Modification with fluorophore	3
Catalytic hairpin assembly and Mg ²⁺ - dependent DNAzyme	Biotin-SA	2	6.5	- Modification with fluorophore and quencher	4
Terminal protection of small molecule-linked loop DNA probe	Biotin-SA	400	2	- Low sensitivity	5
Fluorophore-labeled DNA covalently linked to graphene oxide	Biotin-SA	80	2	 Low sensitivity Tedious preparation of nanocomposite Modification with fluorophore 	6
RCA combined with Exo III-aided signal amplification	Folate-FR	0.8	7 <	Modification with fluorophore and quencher	7
DNAzyme	Folate-FR	7	2.75	Modification with fluorophore and quencher	8
eSDA	Biotin-SA	16	2	-	This work

Strand name	DNA sequence (5' → 3') ^(a,b)		
FP	CGA A <u>GG ATC</u> GCG GTC GGA AGC TC		
RP	CGA A <u>GG ATC</u> TAG TGC GTC TCG G		
TP-BT	GCG GTC GGA AGC TCC TAG AAT GCA CTG CCG AGA CGC ACT AGA		
	TCC TTC G-biotin		
^(a) The recognition sequence for nicking endonuclease is underlined.			

Table S2 DNA sequences employed in this work.

^(b) The sequence in RP identical to TP-BT is highlighted in blue while the sequence in

FP complementary to TP-BT is highlighted in red.

Conjugation of biotin to the 3'-end of DNA in TP-BT

Since the chemical DNA synthesis is carried out from the 3' to 5' direction. The first monomer at the 3'-end should be covalently attached to a solid support. Thus, the biotin-derivatized CPG support was used as a starting material for the synthesis of 3'-biotin-modified DNA (TP-BT), which was followed by the standard DNA synthesis steps consisting of repetitive cycles of detritylation, coupling, capping, and oxidation.^{9, 10} Finally, the as-prepared TP-BT was purified by HPLC.

Fig. S1 Optimization of the reaction times for biotin-SA interaction, Exo I-catalyzed degradation, and eSDA. (a) Fluorescence signal-to-background ratios (F/F₀) at different biotin-SA interaction times. The reaction times for Exo I-catalyzed degradation and eSDA are 30 min and 30 min, respectively. (b) F/F_0 at different Exo I-catalyzed degradation times. The reaction times for biotin-SA interaction and eSDA are 30 min and 30 min, respectively. (c) F/F_0 at different Exo I-catalyzed degradation and Exo I-catalyzed degradation times. The reaction times for biotin-SA interaction and eSDA are 30 min and 30 min, respectively. (c) F/F_0 at different eSDA reaction times. The reaction times for biotin-SA interaction and Exo I-catalyzed degradation are 30 min and 45 min, respectively. F_0 and F are the fluorescence intensities at 525 nm from SYBR green I in the absence and presence of SA, respectively. The final concentrations of KF, Nt.Alwl, SYBR green I, primers, Exo I, and SA are 60 U/mL, 120 U/mL, 1X, 100 nM, 0.5 U/µL, and 10 nM, respectively.

Fig. S2 Optimization of the reaction concentrations of KF, Nt.AlwI, SYBR green I, primers, and Exo I. (a) Fluorescence signal-to-background ratios (F/F₀) at different KF concentrations. The final concentrations of Nt.AlwI, SYBR green I, primers, and Exo I are 120 U/mL, 1X, 100 nM, and 0.5 U/µL, respectively. (b) F/F_0 at different Nt.AlwI concentrations. The final concentrations of KF, SYBR green I, primers, and Exo I are 60 U/mL, 1X, 100 nM, and 0.5 U/µL, respectively. (c) F/F_0 at different SYBR green I concentrations. The final concentrations of KF, Nt.AlwI, primers, and Exo I are 60 U/mL, 120 U/mL, 120 U/mL, 120 U/mL, 100 nM, and 0.5 U/µL, respectively. (d) F/F_0 at different primers concentrations. The final concentrations of KF, Nt.AlwI, SYBR green I, and Exo I are 60 U/mL, 120 U/mL, 0.5X, and 0.5 U/µL, respectively. (e) F/F_0 at different Exo I concentrations. The final concentrations. The final concentrations. The final concentrations of KF, Nt.AlwI, SYBR green I, and Exo I are 60 U/mL, 120 U/mL, 0.5X, and 0.5 U/µL, respectively. (e) F/F_0 at different Exo I concentrations. The final concentrations of KF, Nt.AlwI, SYBR green I, and primers are 60 U/mL, 120 U/mL, 0.5X, and 0.5 U/µL, respectively. (e) F/F_0 at different Exo I concentrations. The final concentrations of KF, Nt.AlwI, SYBR green I, and primers are 60 U/mL, 120 U/mL, 0.5X, and 10 nM, respectively. F_0 and F are the fluorescence intensities at 525 nm from SYBR green I in the absence and presence of SA, respectively. The final concentration of SA is 10 nM.

Fig. S3 The linear relationship between the fluorescence intensity at 525 nm (F_{525}) from SYBR green I and SA concentration spiked in diluted human serum (1%).

Scheme 1 (Enlarged version) Schematic illustration of the detection strategy for biotin-SA interaction based on terminal protection-mediated eSDA.

Fig. 1 (Enlarged version) Feasibility of the detection strategy for biotin-SA interaction. (a) Polyacrylamide gel electrophoresis image of the products obtained under different conditions. (b) Fluorescence emission spectra from SYBR green I under different conditions. M: DNA ladder, 1: TP-BT, 2: TP-BT + Exo I, 3: TP-BT + SA, 4: TP-BT + SA + Exo I, 5: TP-BT + eSDA components including KF, Nt.AlwI, and primers, 6: TP-BT + Exo I + eSDA components, 7: TP-BT + SA + eSDA components, and 8: TP-BT + SA + Exo I + eSDA components. For 1-4, the final concentrations of TP-BT, Exo I, and SA are 200 nM, 1 U/µL, and 200 nM, respectively. For 5-8, the final concentrations of KF, Nt.AlwI, SYBR green I, TP-BT, primers, Exo I, and SA are 60 U/mL, 120 U/mL, 1X, 10 nM, 100 nM, 0.5 U/µL, and 10 nM, respectively. For 1-8, the reaction times for biotin-SA interaction, Exo I-catalyzed degradation, and eSDA are 30 min, 30 min, and 30 min, respectively.

Fig. 2 (Enlarged version) Sensitivity of the detection strategy for biotin-SA interaction. (a) Fluorescence emission spectra and (b) Fluorescence intensities at 525 nm (F_{525}) from SYBR green I in the presence of SA at varying concentrations. Inset in (b): linear relationship between F_{525} and SA concentration (0.01-0.1 nM).

Fig. 3 (Enlarged version) Specificity of the detection strategy for biotin-SA interaction. Fluorescence intensities at 525 nm (F_{525}) from SYBR green I in the presence of SA (10 nM) or other proteins (100 nM).

References

- 1 C. Chen, X. Xiang, Y. Liu, G. Zhou, X. Ji and Z. He, *Biosens. Bioelectron.*, 2014, **58**, 205-208.
- 2 H.-B. Wang, H.-D. Zhang, Y. Chen and Y.-M. Liu, *Biosens. Bioelectron.*, 2015, **74**, 581-586.
- 3 X. Xiang, J. Shi, F. Huang, M. Zheng, Q. Deng and J. Xu, *Biosens. Bioelectron.*, 2015, **74**, 227-232.
- 4 S. Liu, C. Cheng, H. Gong and L. Wang, *Chem. Commun.*, 2015, **51**, 7364-7367.
- 5 X. Chen, C. Lin, Y. Chen, F. Luo, Y. Wang and X. Chen, *Biosens. Bioelectron.*, 2016, **83**, 97-101.
- 6 Y. He and B. Jiao, *Talanta*, 2017, **163**, 140-145.
- 7 L.-J. Ou, H.-B. Wang and X. Chu, *Analyst*, 2013, **138**, 7218-7223.
- 8 J. Ming, T.-F. Jiang, Y.-H. Wang and Z.-H. Lv, Sens. Actuators B: Chem., 2017, 252, 450-457.
- 9 S. Kosuri and G. M. Church, Nat. Methods, 2014, 11, 499-507.
- 10 R. T. Pon, Protocols for Oligonucleotides and Analogs, 1993, 465-496.