Electronic Supplementary Information for:

Intracellular endogenous glutathione detection and imaging by a simple and

sensitive spectroscopic off-on probe

Hui Zhou,† Jinbao Tang,† Lulu Lv, Na Sun, Jie Zhang, Bochao Chen, Jing Mao, Weifen Zhang, Jian Zhang and Jin Zhou*

Key Lab of Applied Pharmacology in Universities of Shandong, College of Pharmacy, Institute of Nanomedicine Research, Weifang Medical University, Weifang, 261053, China. *E-mail: zhoujin@wfmc.edu.cn.

†H. Zhou and J. Tang contributed this work equally.

Table of contents

- 1. Synthesis of probe 1
- 2. Effects of pH and temperature
- 3. Fluorescence kinetic curves of 1 reacting with GSH
- 4. Selectivity study
- 5. Studies on reaction mechanism of probe 1 with GSH
- **6.** Cytotoxicity assay
- 7. Determination of GSH in cell lysate with assay kit
- 8. Determination of GSH in cell lysate with probe 1

1. Synthesis of probe 1

Fig. S1 ¹H NMR spectrum of 1 (600 MHz, DMSO- d_6 , 298K).

Fig. S2 ¹³C NMR spectrum of 1 (150 MHz, DMSO-d₆, 298K).

2. Effects of pH and temperature

Fig. S3 Effects of (A) pH and (B) temperature on the fluorescence of 10 μ M 1 (a) before and (b) after reaction GSH (100 μ M). The results are the mean \pm standard deviation of three separate measurements. $\lambda_{ex/em} = 550/585$ nm.

3. Fluorescence kinetic curves of 1 reacting with GSH

Fig. S4 Plots of fluorescence intensity of 1 (10 μ M) *vs.* the reaction time in the presence of varied concentrations of GSH (0-100 μ M). The measurements were performed at 37 °C in 10 mM PBS (pH 7.4). $\lambda_{ex/em} = 550/585$ nm.

4. Selectivity study

Fig. S5 Fluorescence responses of **1** (10 μ M) to various species: (1) blank (probe **1** only), (2) 100 μ M HOCl, (3) 100 μ M ONOO⁻, (4) 100 μ M *tert*-butyl hydroperoxide, (5) 100 μ M ¹O₂, (6) 100 μ M H₂O₂, (7) 150 mM KCl, (8) 0.1 mM FeCl₃, (9) 100 μ M CuCl₂, (10) 100 μ M CaCl₂, (11) 100 μ M ZnCl₂, (12) 100 μ M MgCl₂, (13) 10 nM Cytochrome C, (14) 10 mM glucose, (15) 100 nM human serum albumin, (16) 5 nM creatine phosphokinase, (17) 0.5 μ g/mL nitroreductase, (18) 5 nM thrombin, (19) 100 μ M GSH. The results are the mean ± standard deviation of three separate measurements. $\lambda_{ex/em} = 550/585$ nm.

5. Studies on reaction mechanism of probe 1 with GSH

Fig. S6 ESI-MS of the reaction solution of 1 (10 μ M) with GSH (50 μ M/mL).

6. Cytotoxicity assay

Fig. S7 Effects of 1 with varied concentrations (1-20 μ M) on the viability of HeLa cells. The viability of the cells without 1 is defined as 100%. The results are the mean ± standard deviation of five separate measurements.

7. Determination of GSH in cell lysate with assay kit

The whole procedure is carried out according to the instruction of the assay kit as follows:

(1) *Standards*. First dilute GSH standard to 300 μ M by mixing 3 μ L 100 mM Standard with 997 μ L dH2O. Next, prepare the 3 μ M Premix by mixing 5 μ L of the 300 μ M GSH with 495 μ L 1 × Assay Buffer. Dilute standards in 1.5-mL centrifuge tubes as described in the Table 1. Transfer 200 μ L of each Standard to separate wells in a 96 well plate.

No	Premix + 1 × Assay Buffer	GSH (µM)
1	$250 \ \mu L + 0 \ \mu L$	3.0
2	$150 \ \mu L + 100 \ \mu L$	1.8
3	75 μL + 175 μL	0.9
4	$0 \ \mu L + 250 \ \mu L$	0

Table S1 Determination of GGT level in human serum samples.

(2) *Glutathione Detection*. Prepare enough working reagent (WR) for 4 standards and all samples. For each reaction combine the following: 105 μ L 1 × Assay Buffer, 1 μ L GR Enzyme, 0.25 μ L NADPH and 0.5 μ L DTNB. Mix WR immediately after adding the DTNB. Add 100 μ L of WR to each Standard and Sample well. Mix well.

(3) Read OD_{412nm} at 0 min and again at 10 min.

(3) *Calculation*. Subtract OD_{0min} from OD_{10min} for each Standard and sample. Next subtract the ΔOD_{BLANK} (Std 4) from the ΔOD values of all Standards and plot the $\Delta \Delta OD$'s against standard concentrations. Determine the slope using linear regression fitting. The GSSG and GSH concentrations of the Samples are calculated as follows:

$$[GSH_{TOTAL}] = \frac{\Delta OD_{SAMPLE} - \Delta OD_{BLANK}}{Slope} \times n (\mu M)$$
$$[GSSG] = 0.5 \times \frac{\Delta OD_{S(GSSG)} - \Delta OD_{BLANK}}{Slope} \times n (\mu M)$$
$$[GSH] = [GSH_{TOTAL}] - 2 \times [GSSG](\mu M)$$

 ΔOD_{SAMPLE} , ΔOD_{BLANK} and $\Delta OD_{S(GSSG)}$ are the change in optical density values of the sample, water (Std 4) and sample treated with Scavenger, respectively. n is the dilution factor. For all samples treated with Scavenger, n = 165. Conversions: 1 mg/dL glutathione equals 32.5 μ M, 0.001% or 10 ppm.

Fig. S8 Determination of GSH in cell lysate with assay kit. (A) The linear regression fitting of the $\Delta\Delta$ OD's against standard concentrations; (B) The relative intensity of absorbance of cell lysate under different treatment conditions then incubated with assay kit.

8. Determination of GSH in cell lysate with probe 1

Subsequently, the cell lysate of NMM and ALA pre-treated A549 cells was diluted to appropriately to meet the linear detection requirement, incubated with the probe and measured with the Hitachi F-7000 spectrofluorimeter.