Electronic Supplementary Information

Ratiometric strategy based electrochemical sensing interface for imidacloprid sensitive and reliable detection

Xueyan Li, Xianwen Kan*

College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China; The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing.

Fig. S1 Electropolymerization CV curves of THI (A) and CD (B).

Fig. S2 30-cycle CV curves of pTHI/GCE (A) and pCD/pTHI/GCE (B) in 0.1mol/L PBS (pH=6.0).

Fig. S3 The effect of pH value of electropolymerization solution.

Fig. S4 Selectivity of the sensor. Current responses of 5.0×10^{-6} mo/L THIA, 5.0×10^{-6} mo/L THIM, 5.0×10^{-6} mo/L DIN, 5.0×10^{-6} mo/L ACE, 5.0×10^{-4} mo/L Ca²⁺, 5.0×10^{-4} mo/L Mn²⁺ or 5.0×10^{-4} mo/L SO₄²⁻, the ratios of current responses on the sensor calculated by current recorded in 5.0×10^{-6} mo/L IMI.

Modified electrode	linear range (mol/L)	LOD (mol/L)	Reference
Graphene modified GCE	8.0×10^{-7} - 1.0×10^{-5}	3.6×10 ⁻⁷	1
Electrochemically pretreated boron-doped diamond electrode	3.0×10 ⁻⁵ -2.0×10 ⁻⁴	8.6×10 ⁻⁶	2
Graphene/imprinted polymer modified GCE	5.0×10 ⁻⁷ -1.5×10 ⁻⁵	1.0×10-7	3
Nanosilver Nafion/nanoTiO ₂ Nafion modified GCE	5.0×10 ⁻⁷ -3.5×10 ⁻⁶	2.5×10-7	4
β -CD polymer/ reduced graphene oxide modified GCE	5.0×10 ⁻⁸ -1.5×10 ⁻⁵	2.0×10 ⁻⁸	5
Poly(carbazole)/reduced graphene oxide modified GCE	4.4×10 ⁻⁷ -1.5×10 ⁻⁶	2.2×10-7	6
Nitrogen-doped grapheme modified GCE	4.0×10 ⁻⁶ -1.0×10 ⁻⁴	5.5×10-7	7
Ag nanodendrimers/grapheme modified GCE	1.0×10 ⁻⁶ -1.0×10 ⁻⁴	8.1×10-7	8
Pt-In catalytic nanoparticles /Bromophenol blue doped imprinted polymer modified GCE	2.0×10 ⁻¹⁰ -5.0×10 ⁻⁸	1.2×10 ⁻¹¹	9
Ionic liquid modified carbon- ceramic electrode	5.0×10 ⁻⁸ -7.0×10 ⁻⁶	3.1×10 ⁻⁸	10
Graphene oxide modified GCE	1.0×10^{-5} - 2.0×10^{-4}	7.9×10 ⁻⁶	11
DMIP/PTH/MWNTs/GCE modified GCE	1.0×10 ⁻⁷ -1.0×10 ⁻⁴	6.5×10 ⁻⁸	12
Ionic liquid functionalized gold nanoparticles probe	1.0×10 ⁻⁶ -1.0×10 ⁻⁵	5.0×10-7	13
Molecularly imprinted sensor	7.5×10^{-7} - 7.0×10^{-5}	4.0×10 ⁻⁷	14
MIP/GN modified GCE	5.0×10 ⁻⁶ -1.5×10 ⁻⁵	1.0×10 ⁻⁷	15
pCD/pTHI/GCE	4.0×10 ⁻⁸ -1.0×10 ⁻⁵	1.7×10 ⁻⁸	This work

Table S1 Comparison of other electrochemical methods for IMI detection with our work.

References

- 1 W. Lei, Z. Han, W. Si, Q. Hao, Y. Zhang, M. Xia, F Wang, ChemElectroChem, 2014, 1, 1063.
- 2 M.B. Brahim, H.B. Ammar, R. Abdelhédi, Y. Samet, Chin. Chem. Lett., 2016, 27, 666.
- 3 M. Zhang, H.T. Zhao, T.J. Xie, X. Yang, A.J. Dong, H. Zhang, J. Wang, Z.Y. Wang,

Sens. Actuators B, 2017, 252, 991.

- 4 A. Kumaravel, M. Chandrasekaran, Sens. Actuators B, 2011, 158, 319.
- 5 M. Chen, Y. Meng, W. Zhang, J. Zhou, J. Xie, G. Diao, Electrochim. Acta, 2013, 108. 1.
- 6 W. Lei, Q. Wu, W. Si, Z. Gu, Y. Zhang, J. Deng, Q. Hao, Sens. Actuators B, 2013, 183, 102.
- 7 W. Si, W. Lei, Q. Hao, X. Xia, H. Zhang, J. Li, Q. Li, R. Cong, Electrochim. Acta, 2016, 212, 784.
- 8 M.R. Majidi, S. Ghaderi, J. Electroanal. Chem., 2017, 792, 46.
- 9 S. Li, C. Liu, G. Yin, J. Luo, Z. Zhang, Microchim. Acta, 2016, 183, 3109.
- 10 M.R. Majidi, R.F.B. Baj, M. Bamorowat, Measurement, 2016, 93, 29.
- 11 V. Urbanová, A. Bakandritsos, P. Jakubec, Biosens. Bioelectron., 2017, 89, 532.
- 12 Y. Dai, X. Kan, Chem. Commun., 2017, 53, 11755.
- 13 X. Zhang, Z. Sun, Z. Cui, H. Li, Sens. Actuators B, 2014, 191, 313.
- 14 L. Kong, X. Jiang, Y. Zeng, T. Zhou, G. Shi, Sens. Actuators B, 2013, 185, 424.
- 15 M. Zhang, H.T. Zhao, T.J. Xie, Sens. Actuators B, 2017, 252, 991.