Electronic supplementary information

Peptide-assembled WS_2 nanosheet as a A peptide- WS_2 nanosheet based biosensing platform for the determination of β -secretase and screening of its Inhibitors

Xianwei Zuo, a, b, c Hongxia Dai, a,b Huige	Zhang, a,b Juanjuan Liu, a	a,b Sudai Ma, a,b
Xingguo Chen a,b *		

- ^a State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou
 730000, China
- ^b Department of Chemistry, Lanzhou University, Lanzhou 730000, China
- ^c Key Laboratory of Sensor and Sensing Technology of Gansu Province, Gansu Academy of Sciences, Lanzhou 730000, China
- * Corresponding author

Tel.: 86-931-8912763. Fax: 86-931-8912582. E-mail: chenxg@lzu.edu.cn

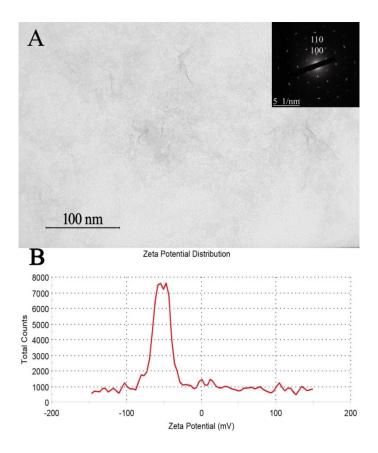


Fig. S1 (A) TEM image of WS $_2$ nanosheet, Inset: EDS spectrum of WS $_2$ nanosheet, (B) Values of the ζ potential for WS $_2$ nanosheet.

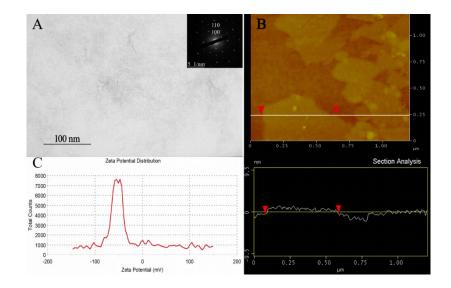


Fig. S1 (A) TEM image of WS $_2$ nanosheet, Inset: SAED pattern of WS $_2$ nanosheet, (B) AFM image and height profile of WS $_2$ nanosheet, (C) Values of the ζ potential for WS $_2$ nanosheet.

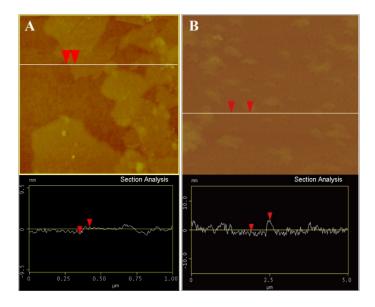


Fig. S2 AFM image and height profile of WS_2 nanosheet (A) and peptide- WS_2 complex (B).

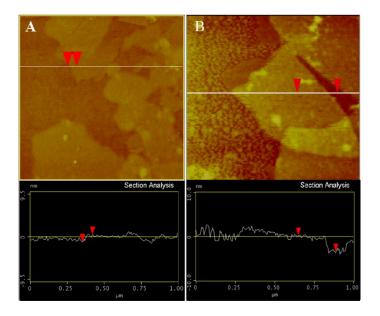
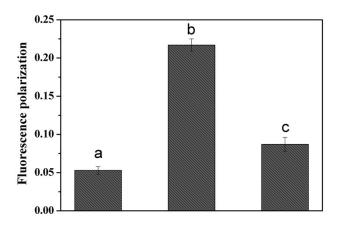
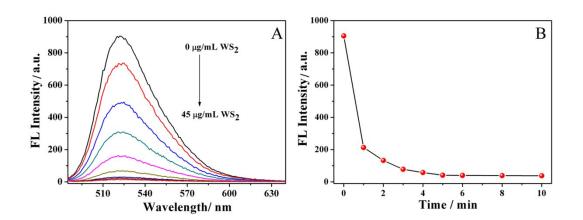




Fig. S2 AFM image and height profile of WS_2 nanosheet (A) and peptide- WS_2 complex (B).

Fig. S3 Changes of fluorescence anisotropy of (a) 50 nM FAM-peptide, (b) 50 nM FAM-peptide + 25 mg·mL⁻¹ WS₂ nanosheet, (c) 50 nM FAM-peptide + 25 mg·mL⁻¹ WS₂ nanosheet + 100 nM BACE1.

Fig. S4 (A) Fluorescence quenching of FAM-peptide in the presence of an increasing amount of WS₂ nanosheet $(0, 2, 5, 10, 15, 20, 25, 35, \text{ and } 45 \,\mu\text{g·mL}^{-1})$. (B) Fluorescence quenching of FAM-peptide by WS₂ nanosheet $(25 \,\mu\text{g·mL}^{-1})$ as a function of time.

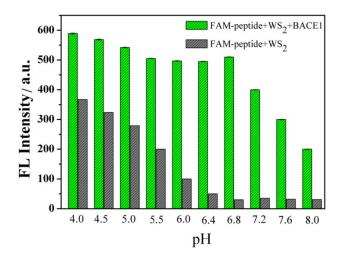


Fig. S5 The effect of pH on fluorescence intensity.

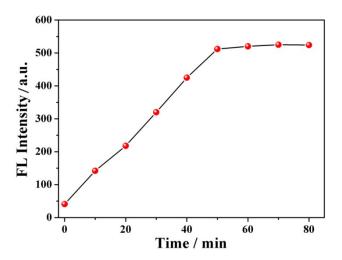
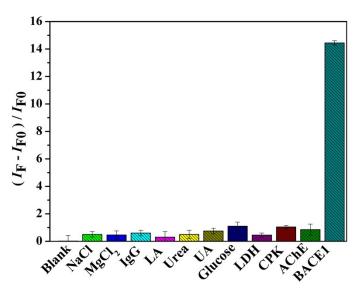
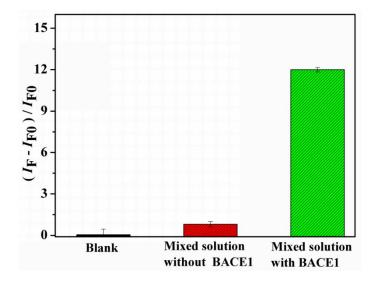




Fig. S6 The effect of cleavage time on fluorescence intensity.

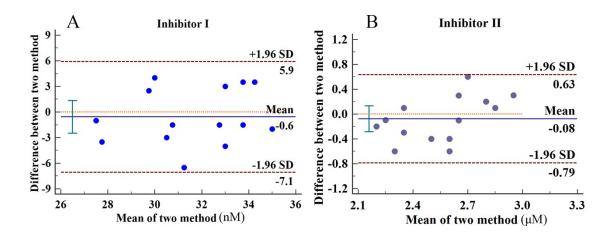

Fig. S7 Fluorescence intensity of the WS₂ nanosheet-based biosensing platform in the presence of different interfering substances: Blank (without BACE1), NaCl(1 mM), MgCl₂(1 mM), IgG(500 nM), LA(1 mM), urea(1 mM), UA(1 mM), glucose(1 mM), LDH(500 nM), CPK (500 nM), AChE(500 nM), and BACE1(100 nM).

Fig. S8 The difference in fluorescence intensity of WS₂ nanosheet-based biosensing platform for BACE1 under various conditions.(mixed solution including NaCl(1 mM), MgCl₂(1 mM), IgG(500 nM), LA(1 mM), urea(1 mM), UA(1 mM), glucose(1 mM), LDH(500 nM), CPK (500 nM), AChE(500 nM), and BACE1(100 nM))

 Table S1
 Recovery test of BACE1 in rat CSF samples

Sample	Added	Found	Recovery	RSD
No.	(nM)	(nM)	(%)	(n=3, %)
1	0.30	0.27	90.00	1.50
2	8.00	7.81	97.63	0.41
3	75.00	78.60	104.8	3.32

Fig. S9 Bland-Altman plots of IC50 values obtained from our proposed method and ELISA assay (A) inhibitor I, (B) inhibitor II.