Supplementary Information

Metal Ions Induced Secondary Structure Rearrangements: Mechanically Interlocked Lasso vs Unthreaded Branched-Cyclic Topoisomers

Kevin Jeanne Dit Fouque,[†] Javier Moreno,[†] Julian D. Hegemann,[‡] Séverine Zirah,[§] Sylvie Rebuffat,[§] and Francisco Fernandez-Lima. *,[†]

[†] Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.

[‡] Department of Chemistry, University of Illinois, Urbana-Champaign, IL 61801, USA.

[§] Laboratory Molecules of Communication and Adaptation of Microorganisms, National Museum of Natural History, Sorbonne Univ, 75005 Paris, France.

Corresponding Author

fernandf@fiu.edu

Table of Contents:

Figure S1. 3D representation of class II lasso peptides.

Figure S2. Scheme of the TIMS cell.

Figure S₃. TIMS spectra of lasso and branched-cyclic topoisomers of the protonated, sodiated, potassiated and cesiated species.

Figure S4. (a) Correlation of the \overline{CCS} of the doubly protonated species of lasso and branched-cyclic peptides as a function of the molecular mass. (b) Effect of the metalated species on the lasso conformational spaces as a function of the loop size.

Figure S₅. TIMS spectra for syanodin I, sphingonodin I, caulonodin III and microcin J₂₅ cationized by protonated, ironated and coppiated species.

Figure S6. TIMS spectra for sphingonodin I and its branched-cyclic topoisomers cationized by protonated, sodiated, potassiated, cesiated, magnesiated, calciated, nickelated and zincated species.

Figure S7. TIMS spectra for caulonodin III and its branched-cyclic topoisomers cationized by protonated, sodiated, potassiated, cesiated, magnesiated, calciated, nickelated and zincated species.

Figure S8. TIMS spectra for microcin J₂₅ and its branched-cyclic topoisomers cationized by protonated, sodiated, potassiated, cesiated, magnesiated, calciated, nickelated and zincated species.

Table S1. Conditions for the production of the studied class II lasso peptides.

Table S2. TIMS experimental ion-neutral collision cross sections (CCS, Å²) for the doubly cationized species of syanodin I and its branched-cyclic topoisomer.

Table S3. TIMS experimental ion-neutral collision cross sections (CCS, Å²) for the doubly cationized species of sphingonodin I and its branched-cyclic topoisomer.

Table S4. TIMS experimental ion-neutral collision cross sections (CCS, $Å^2$) for the doubly cationized species of caulonodin III and its branched-cyclic topoisomer.

Table S5. TIMS experimental ion-neutral collision cross sections (CCS, $Å^2$) for the doubly cationized species of microcin J25 and its branched-cyclic topoisomer.

Figure S1. Three-dimensional representations of class II lasso peptides. The lasso topology of astexin-1 (19) (PDB 2M37),¹ capistruin,² caulonodin V (PDB 2MLJ),³ caulosegnin I (PDB 2LX6),⁴ microcin J25 (PDB 1Q71),⁵ and xanthomonin I (PDB 4NAG)⁶ are shown. In the 3D lasso structures, the macrolactam rings, loops, plugs and C-terminal tails are displayed in green, blue, red and orange, respectively.

Peptide	Medium	Conditions for production	Producing Strain
Caulonodin III	M9	20°C for 3 days	E. coli BL21 (DE3) transformed with pET41a construct
Microcin J25	M63	37°C for 1 day	E. coli MC4100 transformed with pTUC202
Sphingonodin I	M9	20°C for 3 days	E. coli BL21 (DE3) transformed with pET41a construct
Syanodin I	M9	20°C for 3 days	E. coli BL21 (DE3) transformed with pET41a construct

Table S1. Conditions for the production of the studied class II lasso peptides.

Figure S2. Scheme of the TIMS cell

Figure S3. Typical TIMS spectra of lasso and branched-cyclic topoisomers of the protonated (black), sodiated (dark green), potassiated (dark blue) and cesiated (red) species. Heat maps representing the TIMS spectra are illustrated. A typical *Sr* of 0.56 V/ms was used.

Figure S4. (a) Correlation of the \overline{CCS} of the doubly protonated species of lasso (blue trace) and branched-cyclic (red trace) peptides as a function of the molecular mass. (b) Effect of the metalated species on the lasso conformational spaces as a function of the loop size.

Figure S5. Typical TIMS spectra for a) syanodin I, b) sphingonodin I, c) caulonodin III and d) microcin J25 cationized by protonated (black), ironated (red) and coppiated (green) species. A typical *Sr* of 0.56 V/ms was used.

Figure S6. Typical TIMS spectra for sphingonodin I (blue traces) and its branched-cyclic (red traces) topoisomers cationized by (a) protonated, (b, e) sodiated, (c, f) potassiated, (d, g) cesiated, (h) magnesiated, (i) calciated, (j) cobaltiated, (k) nickelated and (l) zincated species. A typical *Sr* of 0.56 V/ms was used and the resolution (*r*) values are given. The peaks highlighted by * symbols were taken to calculate the resolution.

Figure S7. Typical TIMS spectra for caulonodin III (blue traces) and its branched-cyclic (red traces) topoisomers cationized by (a) protonated, (b, e) sodiated, (c, f) potassiated, (d, g) cesiated, (h) magnesiated, (i) calciated, (j) cobaltiated, (k) nickelated and (l) zincated species. A typical *Sr* of 0.56 V/ms was used and the resolution (*r*) values are given. The peaks highlighted by * symbols were taken to calculate the resolution.

Figure S8. Typical TIMS spectra for microcin J25 (blue traces) and its branched-cyclic (red traces) topoisomers cationized by (a) protonated, (b, e) sodiated, (c, f) potassiated, (d, g) cesiated, (h) magnesiated, (i) calciated, (j) cobaltiated, (k) nickelated and (l) zincated species. A typical *Sr* of 0.56 V/ms was used and the resolution (*r*) values are given. The peaks highlighted by * symbols were taken to calculate the resolution.

Peptide	Ion	CCS (Å ²), std. error of mean: \pm 0.04%	Resolution (r)
	[M+2H] ²⁺	387/ 394 /401	
	[M+H+Na] ²⁺	378/391/394/ 399	0.7 (2H)
	[M+H+K] ²⁺	394/ 400	
	$[M+H+Cs]^{2+}$	388/ 395 /397/401	
	[M+2Na] ²⁺	377/ 390	0.2 (INd)
	[M+2K] ²⁺	384/ 394	(12)
Svapadin I	$[M+2Cs]^{2+}$	395	0.5 (IK)
Syanouni i	[M+Mg] ²⁺	379/ 384 /391/395/400	$r = (rC_{0})$
	[M+Ca] ²⁺	380/ 384 /390/398	1.7 (ICS)
	[M+Fe] ²⁺	380/387/393	a + (aNa)
	[M+Co] ²⁺	378/382/390/ 392	3.4 (21Nd)
	[M+Ni] ²⁺	394	1.8 (2K)
	[M+Cu] ²⁺	379/386/392/396/401	
	$[M+Zn]^{2+}$	378/385/389/ 393	$1 = (2C_{\rm s})$
	[M+2H] ²⁺	383/389/394/ 397 /401	1.5 (208)
	[M+H+Na] ²⁺	397/ 399 /406	2.2 (Mg)
	[M+H+K] ²⁺	385/393/397/ 402 /409	
	[M+H+Cs] ²⁺	386 /403	1.3 (Ca)
	[M+2Na] ²⁺	404 /411	
Sympodia I branchod gualia	[M+2K] ²⁺	390/396/ 401 /409/417	2.2 (Co)
Syanoun i Diancheu-cyclic	$[M+2Cs]^{2+}$	404 /407	
	[M+Mg] ²⁺	385/390/ 395 /399/408	1.6 (Ni)
	[M+Ca] ²⁺	376/386/ 392 /397/404/408	
	[M+Co] ²⁺	380/385/392/396/ 401 /407/410	1.8 (Zn)
	[M+Ni] ²⁺	387/390/394/ 400 /405/408	
	[M+Zn] ²⁺	380/384/390/393/396/ 400 /404/410	

Table S2. TIMS experimental ion-neutral collision cross sections (CCS, $Å^2$) for the doubly cationized species of syanodin I and its branched-cyclic topoisomer. The values involved in the resolution calculation are in bold characters.

Peptide	Ion	CCS (Å ²), std. error of mean: $\pm 0.04\%$	Resolution (r)
	[M+2H] ²⁺	396/401/ 404 /414	
	[M+H+Na] ²⁺	406 /410/417/422	2.8 (2H)
	[M+H+K] ²⁺	404 /407/412/416/420	
	[M+H+Cs] ²⁺	407 /411/416/423	
	[M+2Na] ²⁺	401 /410/416/419	2.2 (11Na)
	[M+2K] ²⁺	407/ 412 /417	$= (\cdot \mathbf{V})$
Sphingopodin I	[M+2Cs] ²⁺	417	4.7 (1K)
Springonoann	[M+Mg] ²⁺	403/405/ 409 /413	$(1, C_{-})$
	[M+Ca] ²⁺	396/ 402 /407/412	4.8 (ICS)
	[M+Fe] ²⁺	401/409/412/418	$-(\mathbf{N}_{\mathbf{r}})$
	[M+Co] ²⁺	404/ 409 /417	2.7 (21Nd)
	[M+Ni] ²⁺	398/404/ 409 /415	2.3 (2K)
	[M+Cu] ²⁺	403/409/416	
	[M+Zn] ²⁺	403/405/ 408 /416	
	$[M+2H]^{2+}$	408/415/419/ 425	2.0(2CS)
	[M+H+Na] ²⁺	404/ 418 /429	1.2 (Mg)
	[M+H+K] ²⁺	407/422/ 427	
	[M+H+Cs] ²⁺	423/ 425 /428	2.1 (Ca)
	[M+2Na] ²⁺	415	
	[M+2K] ²⁺	421/ 426	1.6 (Co)
Sphingonodin I branched-cyclic	$[M+2Cs]^{2+}$	426	
	[M+Mg] ²⁺	402/414/427	1.8 (Ni)
	[M+Ca] ²⁺	400/404/ 413 /423	
	[M+Co] ²⁺	408/ 418 /428	2.1 (Zn)
	[M+Ni] ²⁺	409/413/ 416 /418/424/427	
	[M+Zn] ²⁺	40 8/419	

Table S3. TIMS experimental ion-neutral collision cross sections (CCS, Å²) for the doubly cationized species of sphingonodin I and its branched-cyclic topoisomer. The values involved in the resolution calculation are in bold characters.

Peptide	Ion	CCS (Å ²), std. error of mean: \pm 0.04%	Resolution (r)
	[M+2H] ²⁺	440 /446	
	[M+H+Na] ²⁺	446	2.5 (2H)
	[M+H+K] ²⁺	446	
	$[M+H+Cs]^{2+}$	449	$(\mathbf{N}_{\mathbf{r}})$
	[M+2Na] ²⁺	446	2.0 (IINd)
	[M+2K] ²⁺	447/ 449	$C(\mathbf{V})$
Caulonodin III	$[M+2Cs]^{2+}$	454	2.0 (IK)
Caulonoulli III	[M+Mg] ²⁺	436/438/444/ 446	a = (aCa)
	[M+Ca] ²⁺	438 /445/450	1.7 (ICS)
	[M+Fe] ²⁺	442/451	$1 \left(a N b \right)$
	[M+Co] ²⁺	440/447/ 451 /455	1.4 (21 1 a)
	[M+Ni] ²⁺	442/ 446 /452	2.6 (2K)
	[M+Cu] ²⁺	443/451/455/468	
	[M+Zn] ²⁺	436/ 441 /445/450/455/463	$18(2C_{\rm S})$
	[M+2H] ²⁺	438/443/ 453 /461/472/485	1.8 (205)
	[M+H+Na] ²⁺	433/439/444/454/ 458	3.3 (Mg)
	[M+H+K] ²⁺	441/454/ 457 /465/473/480	
	$[M+H+Cs]^{2+}$	441/445/448/ 461 /474	0.6 (Ca)
	[M+2Na] ²⁺	437/441/448/ 454	
Caulonadin III branchad qualia	[M+2K] ²⁺	439 /444/462	o.8 (Co)
Caulonodin III branched-cyclic	$[M+2Cs]^{2+}$	446	
	[M+Mg] ²⁺	434/438/440/444/448/453/ 458	1.5 (Ni)
	[M+Ca] ²⁺	435/ 442 /449/457/462	
	[M+Co] ²⁺	436/440/444/447/451/ 455	1.6 (Zn)
	[M+Ni] ²⁺	435/439/444/451/ 455	
	[M+Zn] ²⁺	436/443/447/451/ 455 /459/467	

Table S4. TIMS experimental ion-neutral collision cross sections (CCS, Å²) for the doubly cationized species of caulonodin III and its branched-cyclic topoisomer. The values involved in the resolution calculation are in bold characters.

Peptide	Ion	CCS (Ų), std. error of mean: ± 0.04%	Resolution (r)
	[M+2H] ²⁺	476/ 481 /491/497/505/512	
	[M+H+Na] ²⁺	477/484/ 487	1.9 (2H)
	[M+H+K] ²⁺	476/ 488 /491	
	[M+H+Cs] ²⁺	504 /509	1.7 (1Na)
	[M+2Na] ²⁺	497/ 499	
	[M+2K] ²⁺	500 /505/509	
Microsin In-	$[M+2Cs]^{2+}$	507	2.5 (1K)
Microciii J25	[M+Mg] ²⁺	476/485/487/493/ 500 /505	a = (cCa)
	[M+Ca] ²⁺	488/492/ 494 /501	0.5(1Cs)
	[M+Fe] ²⁺	478/490/498/505/513	a = (aNa)
	[M+Co] ²⁺	483/489/494/ 498 /504/511	0.3 (21Nd)
	[M+Ni] ²⁺	483/488/493/ 498 /505/510/515	$1 \circ (2V)$
	[M+Cu] ²⁺	491/499/507/512	1.0 (2K)
	[M+Zn] ²⁺	490/494/ 498 /505/510	
	$[M+2H]^{2+}$	491/ 498 /513	2.1 (208)
	[M+H+Na] ²⁺	476/487/ 498 /505	2.6 (Mg)
	[M+H+K] ²⁺	478/491/ 501 /507	
	[M+H+Cs] ²⁺	479/490/ 500	3.8 (Ca)
	[M+2Na] ²⁺	489/493/ 497	
Migropin Is - here shad qualic	[M+2K] ²⁺	495 /500	3.2 (Co)
Microcin J25 branched-cyclic	$[M+2Cs]^{2+}$	498 /507/517	
	[M+Mg] ²⁺	497/504/508/ 513	3.4 (Ni)
	[M+Ca] ²⁺	486/491/498/501/ 512	
	[M+Co] ²⁺	490/497/502/ 513	3.4 (Zn)
	[M+Ni] ²⁺	490/498/503/510/ 516	
	[M+Zn] ²⁺	491/497/502/507/ 514	

Table S5. TIMS experimental ion-neutral collision cross sections (CCS, $Å^2$) for the doubly cationized species of microcin J25 and its branched-cyclic topoisomer. The values involved in the resolution calculation are in bold characters.

REFERENCES

- 1. M. Zimmermann, J. D. Hegemann, X. Xie and M. A. Marahiel, *Chem. Biol.*, 2013, 20, 558-569.
- 2. T. A. Knappe, U. Linne, S. Zirah, S. Rebuffat, X. Xie and M. A. Marahiel, *J. Am. Chem. Soc.*, 2008, **130**, 11446-11454.
- 3. M. Zimmermann, J. D. Hegemann, X. Xie and M. A. Marahiel, *Chem. Sci.*, 2014, **5**, 4032-4043.
- 4. J. D. Hegemann, M. Zimmermann, X. Xie and M. A. Marahiel, J. Am. Chem. Soc., 2013, 135, 210-222.
- 5. K. J. Rosengren, R. J. Clark, N. L. Daly, U. Goeransson, A. Jones and D. J. Craik, *J. Am. Chem. Soc.*, 2003, **125**, 12464-12474.
- 6. J. D. Hegemann, M. Zimmermann, S. Zhu, H. Steuber, K. Harms, X. Xie and M. A. Marahiel, *Angew. Chem. Int. Ed. Engl.*, 2014, **53**, 2230-2234.