Electronic Supplementary Information

For

A photoluminescence "switch-on" nanosensor composed of nitrogen and sulphur co-doped carbon dots and gold nanoparticles for discriminative detection of glutathione

Jizhou Li, Xinyue Rao, Feng Xiang, Jianjia Wei, Mengke Yuan, and Zhongde Liu*

Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Science, Southwest University, Chongqing 400716, China. Tel: +86-23-68251910. Fax: +86-23-68251048. E-mail: lzdzhy@swu.edu.cn.

Fig.S1 The structure of GSH, Cys, and Hcy.

Fig.S2 PL spectra (recorded from 300 to 390 nm with 10 nm increment) of the N-CDs (a) and the N, S-CDs (b), respectively. The inset showing photographs of the N-CDs and the N, S-CDs under 365 nm UV light.

Fig.S3 PL decays (375 nm laser excitation, and monitored through 435 nm bandpass filter) of the N-CDs and the N, S-CDs, respectively.

Fig.S4 (a) Effect of pH value on the PL intensity of the obtained N, S-CDs and N-CDs, respectively. (b) Photostability of the N, S-CDs and N-CDs under different illumination time.

Fig.S5 Characterization of the as-prepared AuNPs. (a) UV-vis spectra of the AuNPs.(b) SEM image of the AuNPs, the inset showing the size distribution of the AuNPs.

Fig.S6 (a) PL spectra of the N, S-CDs in the absence and presence of different concentration of AuNPs; (b) The variation of PL intensity of the N, S-CDs at 437 nm with the increasing concentrations of AuNPs; (c) PL spectra of the N-CDs in the absence and presence of different concentration of AuNPs; (d) The variation of PL intensity of the N-CDs at 448 nm with the increasing concentrations of AuNPs.

Fig.S7 (a, b) The SEM images of the AuNPs containing the N, S-CDs in the absence and presence of 0.2 μ M of GSH; (c, d) photographic images of the mixture of N, S-CDs and AuNPs in the absence and presence of different concentration of GSH (0, 0.02, 0.1, 2.0, 5.0 μ M) under 365 nm UV light and daylight, respectively.

Fig.S8 (a) Effect of pH value on PL of the N, S-CDs/AuNPs in the absence and presence of GSH. (b) Effect of incubation time on PL of the N, S-CDs/AuNPs in the absence and presence of GSH. Concentration: N, S-CDs, 100 μ g/mL; AuNPs, 10.8 nM; GSH, 1.0 μ M.

Probe	Linear range	LOD	Reference
Naphthalimide-capped AuNPs	0.025-2.28 μM	17 nM	Xu et al. (2012)
AuNPs + ppzdtc	8-250 nM	8 nM	Li et al. (2011)
AuNC conjugated with water-soluble polymer	0-6 μM	29 nM	Uehara et al. (2010)
R6G-QDs conjugate	0.05-80 μM	15 nM	Gui et al. (2012)
QD-MV ²⁺	5-250 μM	0.6 µM	Liu et al. (2010)
AuNCs + Hg ²⁺	0-250 μM	9.4 nM	Park et al. (2013)
PEI-capped AgNCs	0.5-6 μM	380 nM	Zhang et al. (2013)
NCQDs/DTNB	0.01-40 μM	3.23 nM	Yang et al. (2018)
NHPDA/FePt/CNT	0.004-340 μM	1 nM	Karimi-Maleh et al. (2014)
Mu- Hg ²⁺	0.1-40 μM	10 nM	Zhao et al. (2017)
c-dots-MnO ₂	1-10 μM	300 nM	Cai et al. (2015)
N,S-CDs/AuNPs	0.01-5 μM	3.6 nM	This work

Table.S1 Comparison of different optical nanosensors for GSH determination

REFERENCES:

- H. Xu, Y. W. Wang, X. M. Huang, Y. Li, H. Zhang, X. H. Zhong, *Analyst*, 2012, 137, 924-931.
- 2. Y. Li, P. Wu, H. Xu, H. Zhang, X. H. Zhong, Analyst, 2011, 136, 196-200.
- 3. N. Uehara, K. Ookubo, T. Shimizu, Langmuir, 2010, 26, 6818-6825.
- R. J. Gui, X. Q. An, H. J. Su, W. G. Shen, L. Y. Zhu, X. Y. Ma, Z. Y. Chen, X.Y. Wang, *Talanta*, 2012, 94, 295-300.
- J. F. Liu, C. Y. Bao, X. H. Zhong, C. C. Zhao, L.Y. Zhu, Chem. Commun., 2010, 46, 2971-2973.
- K. S. Park, M. I. Kim, M. A. Woo, H. G. Park, *Biosens .Bioelectron*, 2013, 45, 65-69.
- 7. N. Zhang, F. Qu, H. Q. Luo, N. B. Li, Biosens. Bioelectron, 2013, 42, 214-218.
- J. S. Yang, H. X. Wu, P. Yang, C. G. Hou, D. Q. Huo, Sens Actuators B Chem, 2018, 255, 3179-3186.
- H. Karimi-Maleh, F. Tahernejad-Javazmi, A. A. Ensafi, R. Moradi, S. Mallakpour, H. Beitollahi, *Biosens. Bioelectron*, 2014, 60, 1-7.
- W. F. Zhao, M. M. Sun, T. Lei, X. J. Liu, Q. Q. Zhang, C. H. Zong, Sens Actuators B Chem, 2017, 249, 90-95.
- Q. Y. Cai, J. Li, J. Ge, L. Zhang, Y. L. Hu, Z. H. Li, L. B. Qu, *Biosens*. Bioelectron, 2015, 72, 31-36.