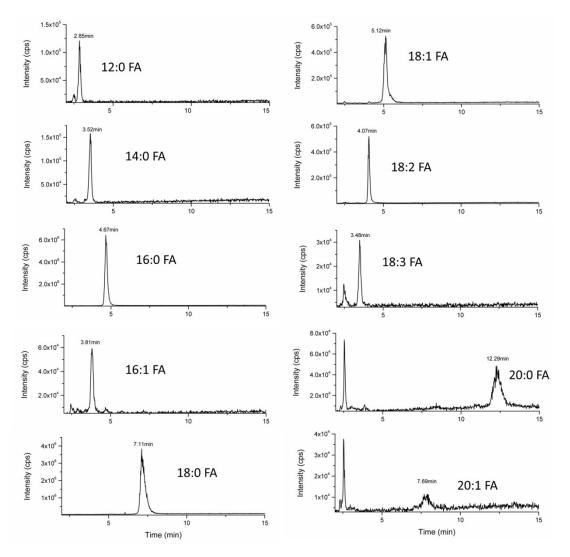
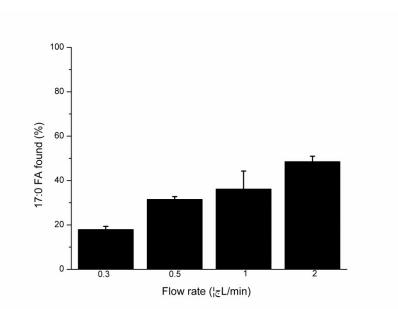
Metal-organic frameworks as affinity agents to enhance microdialysis sampling efficiency of fatty acids


Hui Yang^{a,b} ·Tuo Li^{a,b} ·Lu Liu^{a,b} ·Na Li^{a,b} · Ming Guan^{a,b} · Yangyang Zhang^a ·Zhenpeng Wang^a ·

Zhenwen Zhao*,a,b


^aBeijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, China

^bGraduate School, University of Chinese Academy of Sciences, Beijing, China

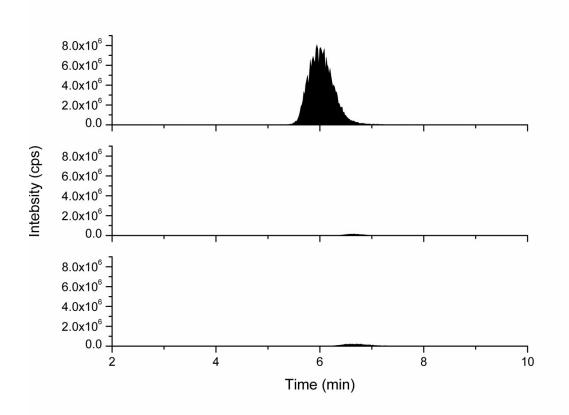

*Corresponding author: Phone: +86-10-62561239. Email: <u>zhenwenzhao@iccas.ac.cn</u>. <u>ORCID</u> iD: 0000-0001-6127-808X

Figure S1. The representative extracted ion chromatograms (XICs) of FAs in dialysate of cell culture mediums.

Figure S2. Non-specific adsorption of FA in the microdialysis system. Percentage of initially added 17:0 FA found in the perfusion fluid after passage through the microdialysis system at four different flow rates after 1 h equilibration time. The data are expressed as the mean \pm SD of three separate measurements.

Figure S3. Ultrahigh performance liquid chromatography- QTrap extracted ion chromatograms (XIC) for 17:0 FA in original standard soulution (top) and supernatant after MIL-101 (middle) or ZIF-8 (bottom) extraction.

Fatty acids	Flow rate (µL/min)	Relative recovery (%)
	0.3	13.07±5.61
C17 FA	0.5	23.79±1.75
	1	27.15±3.45
	2	33.64±4.64

Table S1. Microdialysis relative recovery of 17:0 FA standard at four different flow rates.