Supplementary Materials to Rapid diagnostics of liver steatosis by Raman spectroscopy *via* fiber optic probe: a pilot study

Marta Z. Pacia^{1,2}, Krzysztof Czamara^{1,2}, Magdalena Zebala^{1,2}, Edyta Kus¹, Stefan Chlopicki^{1,3} and Agnieszka Kaczor^{1,2 *}

¹ Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland.

² Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland.

³ Chair of Pharmacology, Jagiellonian University, 16 Grzegorzecka Str., 31-531 Krakow, Poland.

Fig. S1. Homogeneity of liver structure within the sample from one mice. The comparison of the average spectra of the representative individual liverobtained from control (blue), HFD (green) and db/db (red) mice with standard error on each data point of the average spectra.

Fig. S2. The degree of liver steatosis. The overall lipid content calculated based on the integral intensity of the bands at 2895 cm⁻¹ (A) and 1440 cm⁻¹ (B) in the liver tissue of control (blue), HFD (green) and db/db (red) mice. Values were given as mean \pm SEM and were shown in box plots: mean (horizontal line), SEM (box), minimal and maximal values (whiskers). *, p < 0.001.