Exploring the Hidden Potential of Benzothiazole Based Schiff base "AIE and ESIPT" active for pH Sensing, Intracellular Imaging and Ultrasensitive \& Selective detection of Aluminium (Al^{3+}).

Vishal Kachwal ${ }^{1}$, I. S Vamsi Krishna ${ }^{1}$, Leena Fageria ${ }^{2}$, Jagrity Chaudhary ${ }^{1}$, Ram Kinkar Roy ${ }^{1 *}$, Rajdeep Chowdhury ${ }^{2 *}$, Inamur Rahaman Laskar ${ }^{1 *}$
${ }^{1}$ Department of Chemistry, BITS Pilani, Pilani Campus, Rajasthan 333031, India (Email: ir laskar@pilani.bitspilani.ac.in; rkroy@pilani.bits-pilani.ac.in); ${ }^{2}$ Department of Biological Sciences, BITS Pilani, Pilani Campus, Rajasthan 333031, India (Email:
rajdeep.chowdhury@pilani.bits-pilani.ac.in)

Charecterization of organic molecule (OM)

${ }^{1} \mathrm{H}$ NMR of Ligand (OM)
a) ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 12.27(1 \mathrm{H}, \mathrm{s}), 9.31(1 \mathrm{H}, \mathrm{s}), 8.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0), 7.88(1 \mathrm{H}, \mathrm{d}, J 7.9), 7.52(3 \mathrm{H}, \mathrm{dd}, J 17.2$, 8.9), $7.41(1 \mathrm{H}, \mathrm{t}, J 7.5), 7.28(1 \mathrm{H}, \mathrm{s}), 7.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3), 7.03(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4)$.

b) ${ }^{13} \mathrm{C}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.09,167.45,162.01,151.50,135.48,134.68,134.11,126.75,125.31,123.07$, 121.78, 119.85, 118.38, 117.73.

Fig.S1 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Organic molecule Compound

a)

b)

Fig. S2 a) Emission spectrum of organic molecule in methanol ($10^{-4} \mathrm{M}$), b) Absorbance spectra of the organic molecule $\left(10^{-4} \mathrm{M}\right) \lambda_{\max }=275 \& 370 \mathrm{~nm}$

Fig. S3. Emission spectra of Compound in different solvent ($10^{-4} \mathrm{M}$)

Fig. S4 PL Intensity plot of compound in methanol ($10^{-4} \mathrm{M}$)

Fig. S5 PL spectra of the compound in benzene with gradual variation of excitation

Solvent	Average Life time		
	$\lambda_{\text {emi }}$	450 nm	550 nm
Methanol	0.2 ns		0.336 ns
Benzene	1.16 ns		0.12 ns
Cyclohexane	0.09 ns		0.044 ns

(c)

(d) Life time Decay data calculation.

Methanol

At 450 (calculated using three exponential)

T1	$=68.10516 \mathrm{ch}$;	$9.526196 \mathrm{E}^{-10}$ sec	S. Dev $=1.432743 \mathrm{E}^{-11} \mathrm{sec}$	
T2	$=3.070585 \mathrm{ch}$;	$4.294975 \mathrm{E}^{-11} \mathrm{sec}$	S. Dev $=2.680244 \mathrm{E}^{-12} \mathrm{sec}$	
T3	$=352.8476 \mathrm{ch}$;	$4.935449 \mathrm{E}^{-09} \mathrm{sec}$	S. Dev $=4.245255 \mathrm{E}^{-11} \mathrm{sec}$	
A	$=33.50214$			S. $\mathrm{Dev}=0.2364001$
B1	$=2.654491 \mathrm{E}^{-02}$	Rel.Ampl][0.09 A] S. Dev = $1.248183 \mathrm{E}^{-04}$	
B2	$=0.2778857$	Rel.Ampl][0.89 A] S.Dev $=1.631801 \mathrm{E}^{-03}$	
B3	$=6.874496 \mathrm{E}^{-03}$	Rel.Ampl][0.02 A] S.Dev $=2.864137 \mathrm{E}^{-05}$	

At 550 nm (calculated using 4 exponential)

T1	$=26.78279$	ch;	$3.746238 \mathrm{E}^{-10}$ sec	S. Dev $=6.154803 \mathrm{E}$
T2	$=26.50207$	ch;	$3.706972 \mathrm{E}^{-10}$ sec	S. Dev $=3.015059 \mathrm{E}$
T3	$=258.0956$	ch;	$3.610108 \mathrm{E}^{-09} \mathrm{sec}$	S.Dev $=2.693976 \mathrm{E}^{-1}$
T4	$=6.319427$	ch;	$8.839286 \mathrm{E}^{-11} \mathrm{sec}$	S.Dev $=1.380693 \mathrm{E}^{-12}$
A	= 5.948431			
B1	$=1.158852$	[1369.42 Rel.Ampl][0.43 Alpha] S.Dev $=0.030549$		
B2	= -1.173263	[-1371.92 Rel.Ampl][-0.44 Alpha] S.Dev $=0.0310372$		
B3	$=4.54028 \mathrm{E}^{-04}$	[5.17 Rel.Ampl][0.00 Alpha] S.Dev $=1.522398 \mathrm{E}^{-05}$		
B4	$=0.3490632$	[97.33 Rel.Ampl][0.13 Alpha] S.Dev $=1.803554 \mathrm{E}^{-03}$		

B1 $=1.158852 \quad$ [1369.42 Rel.Ampl][0.43 Alpha] S.Dev $=0.030549$
B3 $=4.54028 \mathrm{E}^{-04} \quad\left[5.17\right.$ Rel.Ampl][0.00 Alpha] S.Dev $=1.522398 \mathrm{E}^{-05}$
B4 $=0.3490632$ [97.33 Rel.Ampl][0.13 Alpha] S.Dev $=1.803554 \mathrm{E}^{-03}$

Benzene

At 450nm (Calculated using 2 exponential)

	$=72.5144 \mathrm{ch}$;	$1.014294 \mathrm{E}-09 \mathrm{sec}$	S. Dev $=1.472608 \mathrm{E}-11 \mathrm{sec}$
T2	$=217.7929 \mathrm{ch} ;$	$3.046374 \mathrm{E}-09 \mathrm{sec}$	S.Dev $=1.005732 \mathrm{E}-10 \mathrm{sec}$
	$=130.8135$		S.Dev $=0.5892575$
B1 $=6.174804 \mathrm{E}^{-02}$ [80.13 Rel.Ampl][0.92 Alpha] S. Dev $=1.623824 \mathrm{E}^{-04}$			
B2 $=0.0050996$ [19.87 Rel.Ampl][0.08 Alpha] S.Dev $=6.495936 \mathrm{E}^{-05}$			
	rage Life Time =	315E-09 sec	

At 550nm (Calculated using 2 exponentials)

```
T1 = 7.624972 ch; 1.066542E-10 sec S.Dev = 1.316567E-12 sec
T2 = 63.98113 ch; 8.949348E-10 sec S.Dev = 1.706884E-11 sec
A = 42.97051
B1 = 0.2011084 [ 81.44 Rel.Ampl][ 0.97 Alpha] S.Dev = 7.348991E-04
B2 = 5.463318E-03 [ 18.56 Rel.Ampl][ 0.03 Alpha] S.Dev = 5.905132E-05
```

Cyclohexane
At 450 nm (Calculated using 2 exponentials)

```
T1 = 1.803853 ch; 2.523136E -11 sec S.Dev = 4.193392EE-12 sec
T2 =68.66523 ch; 9.604536E-10 sec S.Dev = 4.047179E-12 sec
A = 229.8599
B1 = 0.4521662 [ 23.27 Rel.Ampl][ 0.92 Alpha] S.Dev = 3.080053E-03
B2 = 3.917591E-02 [76.73 Rel.Ampl][ 0.08 Alpha] S.Dev = 1.070743E-04
```

At 550 nm (Calculated using 2 exponentials)

T1	$=2.925194 \mathrm{ch} ;$	$4.09161 \mathrm{E}-11 \mathrm{sec}$	$\mathrm{S} . \operatorname{Dev}=1.318762 \mathrm{E}-12 \mathrm{sec}$	
T2	$=51.32418 \mathrm{ch} ;$	$7.178961 \mathrm{E}-10 \mathrm{sec}$	$\mathrm{S} . \operatorname{Dev}=1.851417 \mathrm{E}-11 \mathrm{sec}$	
A	$=21.88275$			
B1	$=0.4263506$	[90.82 Rel.Ampl][0.99 Alpha] S.Dev $=1.542918 \mathrm{E}^{-03}$	S.Dev $=8.335311 \mathrm{E}-02$	
B2	$=2.456061 \mathrm{E}^{-03}$	$\left[9.18\right.$ Rel.Ampl][0.01 Alpha] S. $\operatorname{Dev}=3.718652 \mathrm{E}^{-05}$		

Fig. S6 Life time decay of compound in a) Methanol, cyclohexane, benzene at (450 nm) b) Methanol, benzene \& cyclohexane (550 nm) (c) Table showing the life time of compound d) life time decay data calculation.

Fig. S7 Frontier molecular orbital image of HOMO and LUMO energy levels of a) compound enol form and b) OM keto c) Labelled optimized structure of OM form, calculated by using B3LYP/6-31+G(d,P) as implemented on Gaussian 09.

Fig. S8 Packing diagram shows two short contacts of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{CH} \cdots \pi$ with 2.287 and $2.833 \AA$, respectively and a hydrogen bonding of $\mathrm{N}---\mathrm{H}-\mathrm{O}(1.733 \AA$ Å)

(a)

(b)

Fig. S9 Comparison of angle between the crystal structure and calculation from DFT based modeling
a) ORTEP Structure of compound showing different angle; b) calculated from DFT

Fig. S10 Emission spectra of $\mathrm{OM}\left(10^{-4} \mathrm{M}\right)$ with increasing concentration of PEG (600)

Fig. S11. Absorbtion spectra of compound (Methanol , $10^{-3} \mathrm{M}$ solution) in different pH buffer solution (Phosphate buffer solution).

(a)

Fig. S 12 (a) Emission plot of $\mathrm{OM}\left(1^{*} 10^{-4} \mathrm{M}, \mathrm{MeOH}\right)$ in presesnce of acid (trifluoroacetic aicd, TFA) and base (tryethylamine, TEA), (b) ${ }^{1} \mathrm{HNMR}$ of OM in presence of TFA trifluoroacetic acid

Fig. S13 Comparing the emission specctra of OM in solid and in presence of pH 7

Fig. S14 a) PL spectra of compound with $\mathrm{c}=10^{-4} \mathrm{M}$ in methanol upon the addition of 1 equivalent of different metal ions;; (b) image of L ($c=10^{-4} \mathrm{M}$) with 1 equivalent of different metal ions, respectively; from left to right (under 356 nm UV lamp); (c) 3D column diagrams of the relative PL intensity of OM with different metal ions at I_{473}. Pink bars represent the addition of various metal ions to complex L and blue bars represents the subsequent addition of Al^{3+} (1 equivalent) to the above mentioned solutions [1 + different metal ions $+\mathrm{Al}^{1{ }^{+}}$]
(text in x-axis is not clear) (d) The absorption spectra of $\mathrm{OM}\left(1 \times 10^{-4} \mathrm{M}\right)$ with gradual increase in the $\mathrm{Al}^{3+}\left(1 \times 10^{-}\right.$ ${ }^{4} \mathrm{M}$) concentration; (e) Emission spectra of compound ($1 \times 10^{-4} \mathrm{M}$) titrated with different concentration of Aluminium nitrate; (f) Linear fitting of OM with the Al^{3+}

Fig. S15 Ir spectra of compound in abscene and presence of aluminum ion $\left(\mathrm{Al}^{3+}\right)$.

Fig. S16 Proposed structure

a) ${ }^{1} \mathrm{H}$ of compound $+\mathrm{Al}^{3+}$

Fig. S17 ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass spectra of complex compound $+\mathrm{Al}^{3+}$

Table S1: Vertical excitation energies calculated for lowest lying excited singlet states of the OM.

States	Assignment	$\boldsymbol{\Delta E}$	Wavelength	Oscillator strength
S1	HOMO - LUMO (95\%)	3.1479 eV	393 nm	0.7535
S2	HOMO-1 - LUMO (86\%)	3.4825 eV	356 nm	0.0038
S3	HOMO-2 - LUMO (83\%)	3.6056 eV	343 nm	0.3717
S4	HOMO-4 - LUMO (93\%)	4.1272 eV	300 nm	0.0000

Table S2 Comparison of sensitivity of detection of Al^{3+} (Literature reports vs present work).

cc	Reference	Detection Limit in solution
1	Dalton Trans, 2015, 44, 18902-18910	$1.03 \mu \mathrm{M}$
2	J Fluoresc, 2016, 26, 43-51	48 nM
3.	Inorg. Chem, 2016, 55, 9212-9220	0.5 Nm
4	Sens. Actuators, B, 2017,239, 11941204	$0.461 \mu \mathrm{M}$
5.	Anal. Chim. Acta, 2017, 958 38-50	50 nM
6.	J. Photochem. Photobiol. Chemistry, 2017, 332, 273-282	34 nM
7.	Sens. Actuators, B, 2017, 244, 914921	$3.6 \mu \mathrm{M}$
8.	Dyes Pigm., 2017, 139, 136-147	$9.24 \mu \mathrm{M}$
9.	Chem. Commun, 2014, 50, 11833	$2.08 \mu \mathrm{M}$
10.	Talanta,2018,178,796-804	26.7 nM
11	NJC 2018 doi 10.1039/c7nj03964f	2.4 nM
12	J. Photochem. Photobiol, 2018, 353, 77-85	5.7 nM
13	Sens. Actuators, B, 2018,255,366-373	$4.369 \mu \mathrm{M}$
14	Present work	12 pM (456 ppt)

